

الجمهورية الجزائرية الديمقراطية الشعبية République Algérienne Démocratique et Populaire وزارة التعليم العالي والبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

اللجنة البيداغوجية الوطنية لميدان العلوم و التكنولوجيا Comité Pédagogique National du domaine Sciences et Technologies

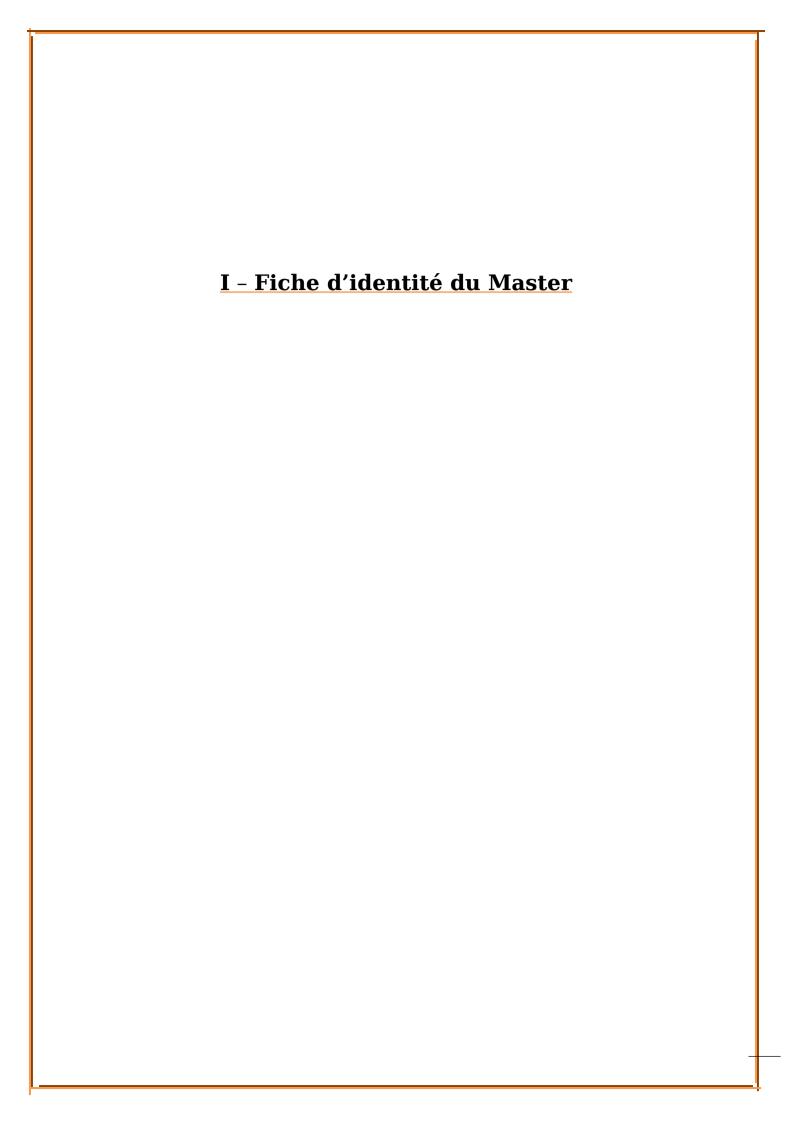
HARMONISATION OFFRE DE FORMATION MASTER ACADEMIQUE

2016 - 2017

Domaine	Filière	Spécialité
Sciences et Technologies	Electrotechnique	Machines Electriques

République Algérienneالجمهورية الجزائرية الديمقراطية الشعبية Démocratique et Populaire

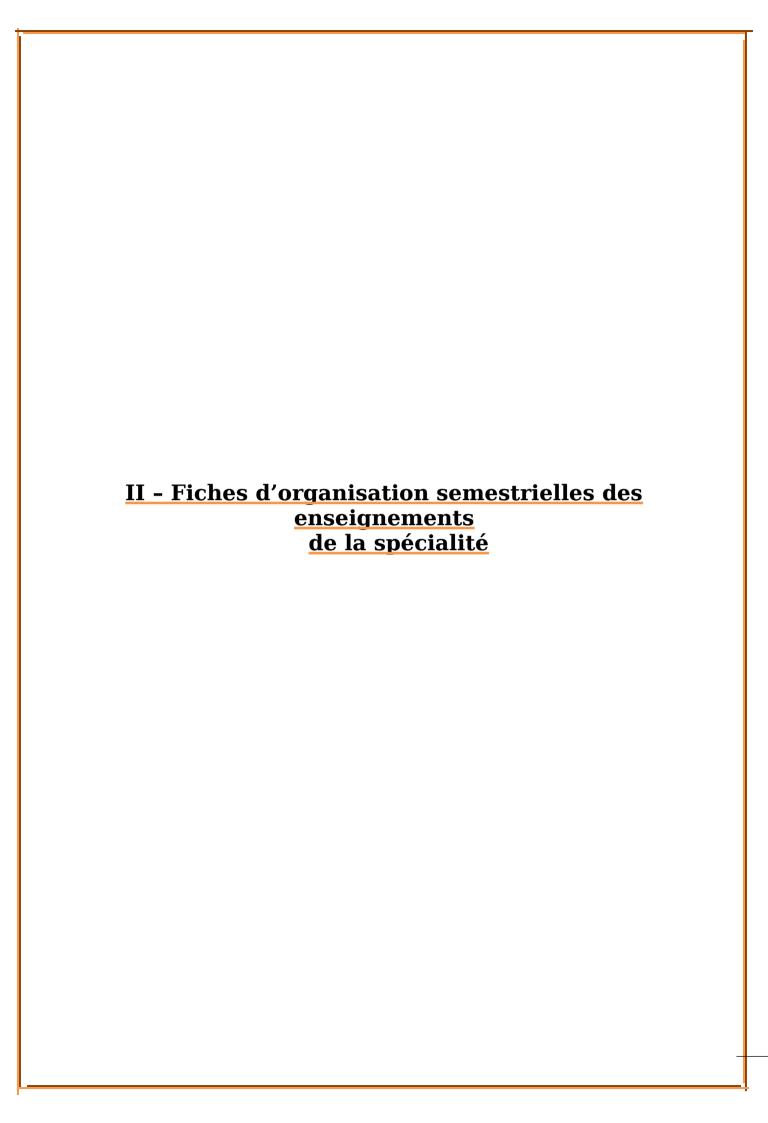
وزارة التعليم الُعالي والْبحث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique اللجنة البيداغوجية الوطنية لميدان العلوم و التكنولوجيا Comité Pédagogique National du domaine Sciences et Technologies


نموذج مطابقة عرضتكوين

ل.م.د

ماستر أكاديمية

2016-2017


التخصص	الفرع	الميدان
ماكنات كهربائية	که <i>ر</i> وتقن <i>ي</i>	علوم و تکنولوجیا

Conditions d'accès

(Indiquer les spécialités de licence qui peuvent donner accès au Master)

Filioro	Master harmonisé	Licences ouvrant accès au master	Classement selon la compatibilité de la licence	Coefficient affecté à la licence
		Electrotechnique	1	1.00
		Electromécanique	2	0.80
Electrotechni	Machines	Maintenance Industrielle	2	0.80
que	électriques	Electronique	3	0.70
		Automatique	3	0.70
		Autres licences du domaine ST	5	0.60

<u>Semestre 1 Master : MachinesElectriques</u>

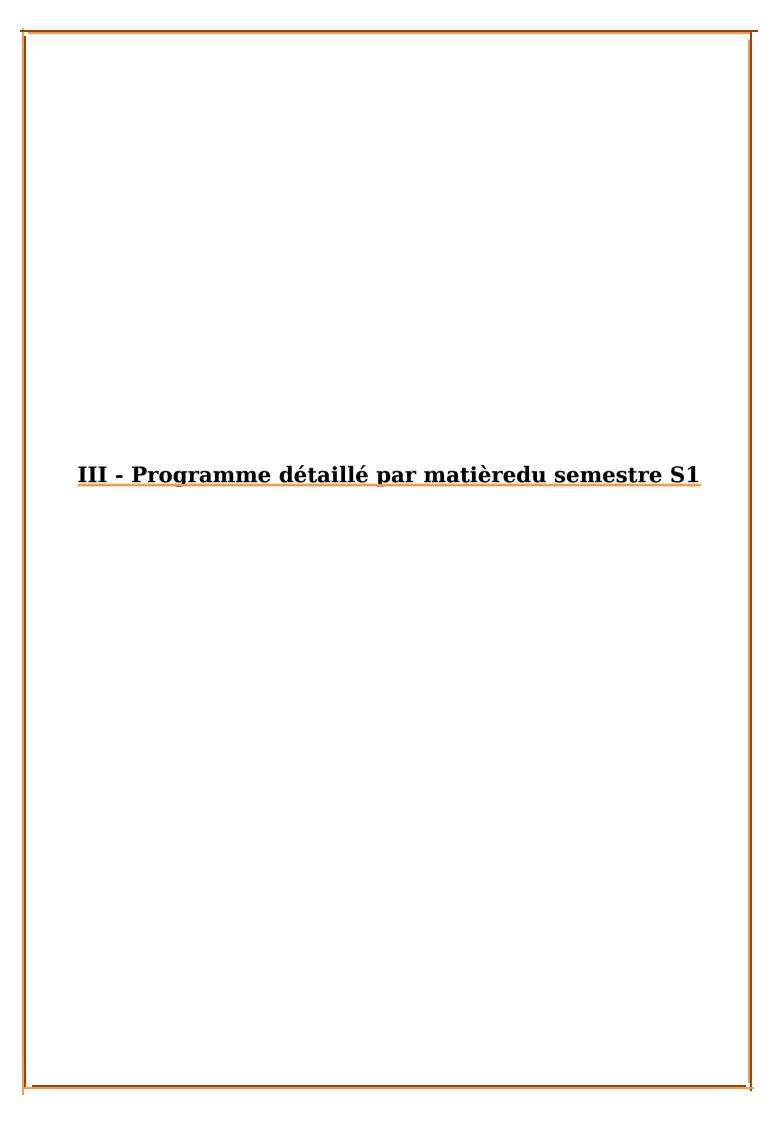
	Matières		ent	Volun hebdo			Volume Horaire	Travail Complémentai	Mode d'évalua	tion
Unité d'enseignement	Matières Matières Matières Matières Matières Mebdomadaire Monare Mon	Exame n								
UE Fondamentale		4	2	1h30	1h30		45h00	55h00	40%	60%
Couc . CLI	Electronique de puissance avancée	4	2	1h30	1h30		45h00	55h00		
1.1.1 Crédits : 10 Coefficients : 5	μ-processeurs et μ-contrôleurs	2	1	1h30			22h30	27h30		100%
→	Machines électriques approfondies	4	2	1h30	1h30		45h00	55h00	40%	60%
Fondamentale Code: UEF 1.1.2 Crédits: 8 Coefficients:		4	2	1h30	1h30		45h00	55h00	40%	60%
	TP : - μ-processeurs et μ-contrôleurs	1	1			1h00	15h00	10h00	100%	
	TP : - Réseaux de transport et de distribution d'énergie électrique	2	1			1h30	22h30	27h30	100%	
1.1	TP : - Electronique de puissance avancée	2	1			1h30	22h30	27h30	100%	
Crédits : 9	TP : Méthodes numériques appliquées et optimisation	2	1			1h30	22h30	27h30	100%	
	TP : - machines électriques approfondies	2	1			1h30	22h30	27h30	100%	
	Panier au choix	1	1	1h30			22h30	02h30		100%

UE	Panier au choix								
Découverte									
Code : UED									
1.1		1	1	1h30			22h30	02h30	100%
Crédits : 2									
Coefficients:									
2									
UE									
Transversale									
Code : UET									
	Anglais technique et terminologie	1	1	1h30			22h30	02h30	100%
Crédits : 1									
Coefficients:									
1									
Total semestre		30	17	12h0	6h00	7h00	2551.00	2551.00	
1				0			375h00	375h00	

Semestre 2 Master : Machines Electriques

Unité d'enseigneme nt	Matières	Crédits	Coefficient	Volume horaire hebdomadaire			Volume Horaire	Travail Complémenta	Mode d'évaluation	
	Intitulé			Cour	TD	ТР	Semestriel (15 semaines)	en Consultation (15 semaines)	Contrôl e Contin u	Exame n
UE Fondamental	Modélisation des machines électriques	4	4	1h30	1h30		45h0	55h00	40%	60%
e Code : UEF 1.2.1 Crédits : 10 Coefficients :	Champ magnétique dans les machines électriques	4	2	1h30	1h30		45h00	55h00	40%	60%

									i	
ŬE Fondamental	Asservissements échantillonnés et Régulation numérique	4	2	1h30	1h30		45h00	55h00	40%	60%
e Code : UEF	Construction des machines électriques	4	2	1h30	1h30		45h00	55h00	40%	60%
1.2.2 Crédits : 8 Coefficients :	Matériaux en électrotechnique et technique de haute tension	2	1	1h30			22h30	27h30		100%
UE Méthodologiq	TP : -Modélisation des machines électriques	2	1			1h30	22h30	27h30	100%	
ue Code : UEM	TP Asservissements échantillonnés et Régulation numérique	2	1			1h30	22h30	27h30	100%	
1.2 Crédits : 9	TP Champ magnétique dans les machines électriques	1	1			1h00	15h00	10h00	100%	
Coefficients : 5	Association machines- convertisseurs	4	2	1h30		1h30	45h00	55h00	40%	60%
UE Découverte	Panier au choix	1	1	1h30			22h30	02h30		100%
Code : UED 1.2 Crédits : 2 Coefficients : 2	Panier au choix	1	1	1h30			22h30	02h30		100%
UE Transversale Code : UET 1.2 Crédits : 1 Coefficients : 1	Ethique, déontologie et propriété intellectuelle	1	1	1h30			22h30	02h30		100%
Total		30	17	13h30	6h00	5h30	375h00	375h00		


Semestre 2 Semestre 3 Master : Machines Floetriques

Semestre 3	Master : Machines Electr	igue	S									
	Matières		nt	Volume hebdom		Э	Volume	Travail Complémenta	Mode d'év	aluation		
Unité d'enseigneme nt	Intitulé		Coefficient	Coefficie	Coefficier coefficier		TD	TP	Horaire Semestriel (15 semaines)	ire en Consultation (15 semaines)	Contrôl e Continu	Exame n
UE Fondamental	Machines électriques spéciales	4	2	1h30	1h3 0		45h00	55h00	40%	60%		
e Code : UEF 1.3.1	Régimes transitoires des machines Electriques	4	2	1h30	1h3 0		45h00	55h00	40%	60%		
Crédits : 10 Coefficients : 5	Conception assistée par ordinateur des machines électriques	2	1	1h30			22h30	27h30		100%		
UE Fondamental	Identification et diagnostique des machines électriques	2	1	1h30			22h30	27h30		100%		
e Code : UEF 1.3.2	Echauffement et refroidissement des actionneurs électromécaniques	2	1	1h30			22h30	27h30		100%		
Crédits : 8 Coefficients : 4	Commande des machines électriques	4	2	1h30	1h3 0		45h00	55h00	40%	60%		
UE Méthodologiq	TP : - Machines électriques spéciales	2	1			1h3 0	22h30	27h30	100%			
ue Code : UEM 1.3	TP : - Régimes transitoires des machines électriques	2	1			1h3 0	22h30	27h30	100%			
Crédits : 9 Coefficients : 5	TP : - Identification et diagnostique des machines électriques	2	1			1h3 0	22h30	27h30	100%			
	TP : Conception assistée par ordinateur des machines	1	1			1h0 0	15h00	10h00	100%			

	électriques									
	TP Commande des machines électriques	2	1			1h3 0	22h30	27h30	100%	
UE Découverte Code : UED	Panier au choix	1	1	1h30			22h30	02h30		100%
1.3 Crédits : 2 Coefficients : 2	Panier au choix	1	1	1h30			22h30	02h30		100%
UE Transversale Code: UET 1.3 Crédits: 1 Coefficients: 1	Recherche documentaire et conception de mémoire	1	1	1h30			22h30	02h30		100%
Total semestre 3		30	17	12h00	6h00	7h00	375h00	375h00		

UE Découverte (S1, S2 et S3)

- 1- Production centralisée et décentralisée de l'énergie électrique
- 2- Energies renouvelables
- 3- Qualité de l'énergie électrique
- 4- Maintenance et Sûreté de fonctionnement
- 5- Informatique industrielle
- 6- Implémentation d'une commande numérique en temps réel
- 7- Matériaux d'électrotechnique et leurs applications
- 8- Techniques de l'intelligence artificielle
- 9- Normes et législations en Electrotechnique
- 10- Sécurité industrielle et habilitation
- 11- Ecologie Industrielle et Développement Durable
- 12- Autres...

UE Fondamentale Code: UEF 1.1.1

Matière: Réseaux de transport et de distribution d'énergie électrique

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement:

L'objectif de ce cours peut être divisé en deux : d'une part l'élargissement des connaissances acquises durant le cours de 'Réseaux électriques' en Licence, et d'autre part introduire les connaissances nécessaires sur la gestion et l'exploitation des réseaux électriques.

Connaissances préalables recommandées:

Lois fondamentales d'électrotechnique (Loi d'Ohm, les lois de Kirchhoff....etc), Analyse des circuits électriques à courant alternatif, calcul complexe. Modélisation des lignes électriques (Cours réseaux électrique en Licence).

Contenu de la matière:

Chapitre 1. Architectures des postes électriques semaines)

(2

(3

Architecture globale du réseau électrique, équipements et architecture des postes (postes à couplage de barres, postes à couplage de disjoncteurs), topologies des réseaux de transport et de distribution d'énergie.

Chapitre 2. Organisation du transport de l'énergie électrique 2.1. Lignes de transport d'énergie semaines)

Calcul des lignes de transport : Choix de la section des conducteurs, isolation, calcul mécanique des lignes, Opération des lignes de transport en régime établi. Opération des lignes de transport en régime transitoire. Transport d'énergie en courant continu (HVDC).

2.2. Réseaux de distribution semaines)

(2

Introduction à la distribution d'énergie électrique, distribution primaire, distribution secondaire, transformateurs de distribution, compensation d'énergie réactive dans les réseaux de distribution, fiabilité de distribution.

Chapitre 3. Exploitation des réseaux électriques MT et BT (3 semaines)

Protection des postes HT/MT contre les surintensités et les surtensions). Modèles des éléments du réseau électrique. Réglage de la tension, Dispositifs de réglage de la tension, - Contrôle de la puissance réactive sur un réseau électrique

Chapitre 4. Régimes de neutre semaines)

(2

Les régimes de neutre (isolé, mise à la terre, impédant), neutre artificiel.

Chapitre 5. Réglage de la tension semaines)

(3

Chute de tension dans les réseaux électrique, méthode de réglage de la tension (réglage automatique de la tension aux bornes des générateurs, AVR, compensation d'énergie réactive par les moyens classiques et modernes,

réglage de la tension par autotransformateur), introduction à la stabilité de la tension.

Mode d'évaluation:

Contrôle continu: 40 %; Examen: 60 %.

- 1. F. Kiessling et al, 'Overhead Power Lines, Planning, design, construction'. Springer, 2003.
- 2. T. Gonen et al, 'Power distribution', book chapter in Electrical Engineering Handbook. Elsevier Academic Press, London, 2004.
- 3. E. Acha and V.G. Agelidis, 'Power Electronic Control in Power Systems', Newns, London 2002.
- 4. TuranGönen : Electric power distribution system engineering. McGraw-Hill, 1986
- 5. TuränGonen : Electric power transmission system engineering. Analysis and Design. John Wiley & Sons, 1988

UE Fondamentale Code: UEF 1.1.1

Matière: Electronique de puissance avancée

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement:

Pour fournir les concepts de circuit électrique derrière les différents modes de fonctionnement des onduleurs afin de permettre la compréhension profonde de leur fonctionnement

Pour doter des compétences nécessaires pour obtenir les critères pour la conception des convertisseurs de puissance pour UPS, Drives etc.,

Capacité d'analyser et de comprendre les différents modes de fonctionnement des différentes configurations de convertisseurs de puissance.

Capacité à concevoir différents onduleurs monophasés et triphasés

Connaissances préalables recommandées:

Composants de puissance, l'électronique de puissance de base,

Contenu de la matière:

Chapitre 1 : Méthodes de modélisation et simulation des semi-conducteurs de puissance

Caractéristique idéalisée des différents types de semi-conducteurs, équations logiques des semi-conducteurs, méthodes de simulations des convertisseurs statiques (2 semaines)

Chapitre 2 : Mécanismes de commutation dans les convertisseurs statiques Principe de commutation naturelle, principe de commutation forcée, calcul des pertes par commutation.

(3 semaines)

Chapitre 3 : Méthodes de conception des convertisseurs statiques à commutation naturelle

Règles de commutation, définition de la cellule de commutation, différents type de sources, règles d'échange de puissance, convertisseurs direct et indirect exemple : étude d'un cyclo convertisseur. (2 semaines)

Chapitre 4 : Méthodes de conception des convertisseurs statiques à commutation forcée

- Onduleur MLI

- Redresseur à absorption sinusoïdale
- Gradateur MLI
- Alimentations à découpage (3 semaines)

Chapitre 5 : Onduleur multi-niveaux

(3 semaines)

Concept multi niveaux, topologies, Comparaison des onduleurs multi-niveaux . Techniques de commande PWM pour onduleur MLI - monophasés et triphasés de source d'impédance.

Chapitre 6 : Qualité d'énergie des convertisseurs statiques (3semaines)

- Pollution harmonique due aux convertisseurs statiques (Etude de cas : redresseur, gradateur).
- Etude des harmoniques dans les onduleurs de tension.
- Introduction aux techniques de dépollution

Mode d'évaluation:

Contrôle continu: 40 %; Examen: 60 %.

- 1. Electronique de puissance, de la cellule de commutation aux applications industrielles. Cours et exercices, A. Cunière, G. Feld, M. Lavabre, éditions Casteilla, 544 p. 2012.
- 2. -Encyclopédie technique « Les techniques de l'ingénieur », traité de Génie Electrique, vol. D4 articles D3000 à D3300.

UE Fondamentale Code: UEF 1.1.1

Matière: μ-processeurs et μ-contrôleurs

VHS: 22h30 (Cours: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

Connaitre la structure d'un microprocesseur et son utilité. Faire la différence entre microprocesseur, microcontrôleur et un calculateur. Connaitre l'organisation d'une mémoire. Connaitre la programmation en assembleur. Connaitre l'utilisation des interfaces d'E/S et les interruptions. Utilisation du micro contrôleur (programmation, commande de système).

Connaissances préalables recommandées

Logiques combinatoire et séquentielle, automatismes industriels

Contenu de la matière :

Chapitre 1 : Architecture et fonctionnement d'un microprocesseur(3 semaines)

Structure d'un calculateur, Circulation de l'information dans un calculateur, Description matérielle d'un microprocesseur, Fonctionnement d'un microprocesseur, les mémoires

Exemple: Le microprocesseur Intel 8086

Chapitre 2: La programmation en assembleur (2 semaines) Généralités, Le jeu d'instructions, Méthode de programmation.

Chapitre 3: Les interruptions et les interfaces d'entrées/sorties (3 semaines)

Définition d'une interruption, Prise en charge d'une interruption par le microprocesseur, Adressages des sous programmes d'interruptions, Adressages des ports d'E/S, Gestion des ports d'E/S

Chapitre 4: Architecture et fonctionnement d'un microcontrôleur (3 semaines)

Description matérielle d'un u-contrôleur et son fonctionnement.

Programmation du μ-contrôleur Exemple : Le μ-contrôleur PIC

Chapitre 5: Applications des microprocesseurs et microcontrôleurs (4 semaines)

Interface LCD - Clavier Interface - Génération de signaux des ports Porte pour convertisseurs - Moteur- Contrôle - Contrôle des appareils DC / AC - mesure de la fréquence - système d'acquisition de données

Mode d'évaluation:

Examen 100 %.

Références bibliographiques:

- 1. M. Tischer et B. Jennrich. La bible PC Programmation système. Micro Application,
 - i. Paris, 1997.
- 2. R. Tourki. L'ordinateur PC Architecture et programmation Cours et exercices.
 - i. Centre de Publication Universitaire, Tunis, 2002.
- 3. H. Schakel. Programmer en assembleur sur PC. Micro Application, Paris, 1995.
- 4. E. Pissaloux. Pratique de l'assembleur I80x86 Cours et exercices. Hermès, Paris, 1994
- 5. R Zaks et A. Wolfe. Du composant au système Introduction aux microprocesseurs. Sybex, Paris, 1988.

Semestre: 1

UE Fondamentale Code: UEF 1.1.2

Matière: Machines électriques approfondies

VHS: 45h (Cours: 1h30, TD 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement

A la fin de ce cours, l'étudiant sera capable d'établir les équations générales de conversion d'énergie électromécanique appliquées aux machines synchrones, asynchrones et à courant continu et saura déterminer leurs caractéristiques en régimes statiques ou variables. Ce qui permet notamment de prendre en compte l'association des machines aux convertisseurs statiques.

Connaissances préalables recommandées

-Circuits électriques triphasés, à courants alternatifs, puissance. Circuits magnétiques, Transformateurs monophasés et triphasés, Machines électriques à courants continu et alternatif (fonctionnement moteur et génératrice).

Contenu de la matière :

Chapitre 1 : Principes généraux (3 semaines)

Principe de la conversion d'énergie électromécanique. Principe du couplage stator/rotor : la machine primitive. Bobinages des machines électriques. calcul des forces magnétomotrices. Équation mécanique ;

Chapitre 2 : Machines synchrones

(4

semaines)Généralités et mise en équations de la machine synchrone à pôles lisses. Étude du fonctionnement de la machine synchrone. Différents systèmes d'excitation. Réactions d'induit. Éléments sur la machine synchrone à pôles saillants sans et avec amortisseurs. Diagrammes de Potier, diagramme des deux réactances et diagramme de Blondel. Éléments sur les machines à aimants permanents. Alternateurs et Couplage en parallèle. Moteurs synchrones, démarrage...

Chapitre 3 : **Machines asynchrones (4 semaines)** Généralités. Mise en équation. Schémas équivalents. Couple de la machine asynchrone. Caractéristiques et diagramme de la machine asynchrone. Fonctionnement moteur/générateur, démarrage, freinage. Moteurs à encoches profondes et à double cages, Moteurs asynchrones monophasés .

Chapitre 4 : Machines à courant continu semaines)

(4

Structure des machines à courant continu. Équations des machines à courant continu. Modes de démarrage, freinage et réglage de vitesse des moteurs à courant continu. Phénomènes de commutation. Saturation et réaction d'induit. Pôles auxiliaires de commutation. Fonctionnement moteur/générateur.

Mode d'évaluation:

Contrôle continu: 40 %; Examen: 60 %.

Références bibliographiques:

- 1. J.-P. Caron, J.P. Hautier : Modélisation et commande de la machine asynchrone, Technip, 1995.
- 2. G. Grellet, G. Clerc : Actionneurs électriques, Principes, Modèles, Commandes, Eyrolles, 1996.

Semestre: 1

UE Fondamentale Code: UEF 1.1.2

Matière: Machines électriques approfondies

VHS: 45h (Cours: 1h30, TD 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement

A la fin de ce cours, l'étudiant sera capable d'établir les équations générales de conversion d'énergie électromécanique appliquées aux machines synchrones, asynchrones et à courant continu et saura déterminer leurs caractéristiques en régimes statiques ou variables. Ce qui permet notamment de prendre en compte l'association des machines aux convertisseurs statiques.

Connaissances préalables recommandées

-Circuits électriques triphasés, à courants alternatifs, puissance. Circuits magnétiques, Transformateurs monophasés et triphasés, Machines électriques à courants continu et alternatif (fonctionnement moteur et génératrice).

Contenu de la matière :

Chapitre 1 : Principes généraux (3 semaines)

Principe de la conversion d'énergie électromécanique. Principe du couplage stator/rotor : la machine primitive. Bobinages des machines électriques. calcul des forces magnétomotrices. Équation mécanique ;

Chapitre 2: Machines synchrones

(4

semaines)Généralités et mise en équations de la machine synchrone à pôles lisses. Étude du fonctionnement de la machine synchrone. Différents systèmes d'excitation. Réactions d'induit. Éléments sur la machine synchrone à pôles saillants sans et avec amortisseurs. Diagrammes de Potier, diagramme des deux réactances et diagramme de Blondel. Éléments sur les machines à aimants permanents. Alternateurs et Couplage en parallèle. Moteurs synchrones, démarrage...

Chapitre 3 : **Machines asynchrones (4 semaines)** Généralités. Mise en équation. Schémas équivalents. Couple de la machine asynchrone. Caractéristiques et diagramme de la machine asynchrone. Fonctionnement moteur/générateur, démarrage, freinage. Moteurs à encoches profondes et à double cages, Moteurs asynchrones monophasés .

Chapitre 4 : Machines à courant continu semaines)

(4

Structure des machines à courant continu. Équations des machines à courant continu. Modes de démarrage, freinage et réglage de vitesse des moteurs à courant continu. Phénomènes de commutation. Saturation et réaction d'induit. Pôles auxiliaires de commutation. Fonctionnement moteur/générateur.

Mode d'évaluation:

Contrôle continu: 40 %; Examen: 60 %.

- 3. J.-P. Caron, J.P. Hautier : Modélisation et commande de la machine asynchrone, Technip, 1995.
- 4. G. Grellet, G. Clerc: Actionneurs électriques, Principes, Modèles, Commandes, Eyrolles, 1996.
- 5. J. Lesenne, F. Notelet, G. Séguier : Introduction à l'électrotechnique approfondie, Technique et Documentation, 1981.
- 6. Paul C.Krause, Oleg Wasyzczuk, Scott S, Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley, Second Edition, 2010. P S Bimbhra, "Generalized Theory of Electrical Machines", Khanna Publishers, 2008.
- 7. A.E, Fitzgerald, Charles Kingsley, Jr, and Stephan D, Umanx, "Electric Machinery", Tata McGraw Hill, 5th Edition, 1992

UE Fondamentale Code: UEF 1.1.2

Matière: Méthodes numériques appliquées et optimisation

VHS: 45h (Cours: 1h30, TD 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement:

L'objectif de cet enseignement est de présenter les outils nécessaires d'analyse numérique et d'optimisation pour atteindre ce triple but. L'enseignement combinera des concepts mathématiques théoriques et une mise en œuvre pratique sur des exemples d'applications concrètes.

Connaissances préalables recommandées:

Mathématique, maitrise de l'environnement MATLAB

Contenu de la matière:

Chapitre 1 : Rappels sur quelques méthodes numériques (3 semaines)

Résolution des systèmes d'équations linéaires et non linéaires par les méthodes itératives; Intégration et différentiation, etc.

Equations différentielles ordinaires (EDO)

- Introduction et formulation canonique des équations et systèmes d'équations différentielles ordinaires ;
- Méthodes de résolution: Méthodes d'Euler ; Méthodes de Runge-Kutta ;
 Méthode d'Adams.

Chapitre 2 : Equations aux dérivées partielles (EDP) (6 semaines)

- Introduction et classifications des problèmes aux dérivées partielles et des conditions aux limites;
- Méthodes de résolution:
 - Méthode des différences finies (MDF);
 - > Méthode des éléments finis (MEF).

Chapitre 3: Techniques d'optimisation (6 semaines)

Définition et formulation : problèmes d'optimisation. Techniques d'optimisation classiques. Optimisation unique et multiple avec et sans contraintes.

Algorithmes d'optimisation : La programmation linéaire, modèle mathématique, technique de la solution, la dualité, Programmation non linéaire.

Mode d'évaluation:

Contrôle continu: 40 %; Examen: 60 %.

- 1. G.Allaire, Analyse Numérique et Optimisation, Edition de l'école polytechnique, 2012
- 2. Computational methods in Optimization, Polak, Academic Press, 1971.
- 3. Optimization Theory with applications, Pierre D.A., Wiley Publications, 1969.

- 4. Taha, H. A., Operations Research: An Introduction, Seventh Edition, Pearson Education Edition, Asia, New Delhi ,2002.
- 5. S.S. Rao, 'Optimization Theory and Applications', Wiley-Eastern Limited, 1984

UE Méthodologique Code : UEM 1.1

Matière: TP - μ -processeurs et μ -contrôleurs

VHS: 15h (Cours: 1h)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement

Connaitre la programmation en assembleur. Connaitre le principe et les étapes d'exécution de chaque instruction. Connaitre l'utilisation des interfaces d'E/S et les interruptions. Utilisation du micro contrôleur (programmation, commande de système).

Connaissances préalables recommandées

Logiques combinatoire et séquentielle, automatismes industriels, algorithmique.

Contenu de la matière

TP1 : Prise en main d'un environnement de programmation sur μ -processeur (1 semaine)

TP2 : Programmation des opérations arithmétiques et logiques dans un $\mu\text{-}$ processeur

(1 semaines)

TP3 : Utilisation de la mémoire vidéo dans un µ-processeur (1 semaines)

TP4: Gestion de la mémoire du u-processeur. (2 semaines)

TP5 : Commande d'un moteur pas à pas par un μ-processeur (2 semaines)

TP6: Gestion de l'écran (1 semaines)

TP7: Programmation du μ-microcontrôleur PIC (2 semaines)

TP8: Commande d'un moteur pas à pas par un μ -microcontrôleur PIC (2 semaines)

Mode d'évaluation:

Contrôle continu: 100 %.

Références bibliographiques:

1. R. Zaks et A. Wolfe. Du composant au système – Introduction aux microprocesseurs.

Sybex, Paris, 1988.

- 2. M. Tischer et B. Jennrich. La bible PC Programmation système. Micro Application, Paris, 1997.
- 3. [3] R. Tourki. L'ordinateur PC Architecture et programmation Cours et exercices.
 - Centre de Publication Universitaire, Tunis, 2002.
- 4. H. Schakel. Programmer en assembleur sur PC. Micro Application, Paris, 1995.

5.	E. Pissaloux. Pratique de l'assembleur I80x86 - Cours et exercices. Hermès, Paris, 1994

UE Méthodologique Code : UEM 1.1

Matière: TP Réseaux de transport et de distribution d'énergie

électrique

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement:

Permettre à l'étudiant de disposer de tous les outils nécessaires pour gérer, concevoir et exploiter les systèmes électro-énergétiques et plus particulièrement les réseaux électriques

Connaissances préalables recommandées:

Généralités sur des réseaux électriques de transport et de distribution

<u>Contenu de la matière:</u> TP N° 1 : Réglage de la tension par moteur synchrone

TP N° 2 : Répartition des puissances et calcul de chutes de tension **TP N° 3** : Réglage de tension par compensation de l'énergie réactive

TP N° 4 : Régime du neutre

TP N° 5 : Réseaux Interconnectés

Mode d'évaluation:

Contrôle continu: 100 %.

- 1. Sabonnadière, Jean Claude, Lignes et réseaux électriques, Vol. 1, Lignes d'énergie électriques, 2007.
- 2. Sabonnadière, Jean Claude, Lignes et réseaux électriques, Vol. 2, Méthodes d'analyse des réseaux électriques, 2007.
- 3. Lasne, Luc, Exercices et problèmes d'électrotechnique : notions de bases, réseaux et machines électriques, 2011.
- 4. J. Grainger, Power system analysis, McGraw Hill , 2003
- 5. W.D. Stevenson, Elements of Power System Analysis, McGraw Hill, 1998.

UE Méthodologique Code : UEM 1.1

Matière: TP Electronique de puissance avancée

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement:

Permettre à l'étudiant de comprendre les principes de fonctionnement des nouvelles structures de convertisseur d'électronique de puissance.

Connaissances préalables recommandées:

Principe de base de l'électronique de puissance

Contenu de la matière:

TP1: Nouvelles structures de convertisseurs **TP2**: Amélioration du facteur de puissance;

TP3: Elimination des harmoniques

TP4: Compensateurs statiques de puissance réactive

Mode d'évaluation:

Contrôle continu: 100%;

- 1. GuySéguier et Francis Labrique, «Les convertisseurs de l'électronique de puissance tomes 1 à 4»
- 2. Ed. Lavoisier Tec et Documentation très riche disponible en bibliothèque. Site Internet : « Cours et Documentation »
- 3. Valérie Léger, Alain Jameau Conversion d'énergie, électrotechnique, électronique de puissance. Résumé de cours, problèmes corrigés », , : ELLIPSES MARKETING

UE Méthodologique Code : UEM 1.1

Matière: TP Méthodes numériques appliquées et optimisation

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement:

Familiariser les étudiants dans le calcul des variations et de résoudre des problèmes en utilisant les techniques d'optimisation associée à des applications d'ingénierie.

Connaissances préalables recommandées:

Capacité d'appliquer les concepts de la théorie de programmation linéaire dans les problèmes de génie électrique

Contenu de la matière:

- Initialisation à l'environnement MATLAB (Introduction, Aspects élémentaires, les commentaires, les vecteurs et matrices, les M-Files ou scripts, les fonctions, les boucles et contrôle, les graphismes, etc.);(1 semaine)
- Ecrire les programmes suivants pour:
 - Calculer de l'intégrale par les méthodes suivantes : Trapèze, Simpson et générale ;

(1 semaine)

- * Résolution des équations et systèmes d'équations différentielles ordinaires par les différentes méthodes Euler, RK-4;(2 semaines)
- Résoudre des systèmes d'équations linéaires et non-linéaires : Jacobi ; Gauss-Seidel ; Newton - Raphson ; (1 semaine)
- * Résoudre des EDP par la MDF et la MEF pour les trois (03) types d'équations (Elliptique, parabolique et elliptique); (6 semaines)
- Minimiser d'une fonction à plusieurs variables sans contraintes (2 semaines)
- Minimiser d'une fonction à plusieurs variables avec contraintes (inégalités et égalités) par les méthodes : gradient projeté et Lagrange -Newton.(02 semaines)

Remarque : Les 3 premières séances peuvent être effectuées comme travail personnel

Mode d'évaluation: Contrôle continu: 100%;

Références bibliographiques:

1. G.Allaire, Analyse Numérique et Optimisation, Edition de l'école polytechnique, 2012

- 2. Computational methods in Optimization, Polak, Academic Press, 1971.
- 3. Optimization Theory with applications, Pierre D.A., Wiley Publications, 1969.
- 4. Taha, H. A., Operations Research: An Introduction, Seventh Edition, Pearson Education Edition, Asia, New Delhi, 2002.
- 5. S.S. Rao,"Optimization Theory and Applications", Wiley-Eastern Limited, 1984.

UE Méthodologique Code : UEM 1.1

Matière: TP Machines électriques approfondies

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Connaissances préalables recommandées:

Bonne maitrise de l'outil informatique et du logiciel MATLAB-SIMULINK.

Contenu de la matière:

- 1. Caractéristiques électromécanique de la machine asynchrone ;
- 2. Diagramme de cercle;
- 3. Génératrice asynchrone fonctionnement autonome;
- 4. Couplage d'un alternateur au réseau et son fonctionnement au moteur synchrone ;
- 5. Détermination des paramètres d'une machine synchrone ;

Mode d'évaluation:

Contrôle continu: 100%

- 1. Th. Wildi, G. Sybille "électrotechnique ", 2005.
- 2. J. Lesenne, F. Noielet, G. Seguier, "Introduction à l'électrotechnique approfondie" Univ. Lille. 1981.
- 3. MRetif "Command Vectorielle des machines asynchrones et synchrone" INSA, cours Pedg. 2008.
- 4. R. Abdessemed "Modélisation et simulation des machines électriques " ellipses, 2011.

Unité d'enseignement : UED 1.1 Matière : Matière 1 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Semestre: 1

Unité d'enseignement : UED 1.1 Matière : Matière 2 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Unité d'enseignement : UET 1.1

Matière : Anglais technique et terminologie

VHS: 22h30 (cours: 1h30)

Crédits : 1 Coefficient : 1

Objectifs de l'enseignement:

Initier l'étudiant au vocabulaire technique. Renforcer ses connaissances de la langue. L'aider à comprendre et à synthétiser un document technique. Lui permettre de comprendre une conversation en anglais tenue dans un cadre scientifique.

Connaissances préalables recommandées:

Vocabulaire et grammaire de base en anglais

Contenu de la matière:

- Compréhension écrite : Lecture et analyse de textes relatifs à la spécialité.
- Compréhension orale : A partir de documents vidéo authentiques de vulgarisation scientifiques, prise de notes, résumé et présentation du document.
- Expression orale : Exposé d'un sujet scientifique ou technique, élaboration et échange de messages oraux (idées et données), Communication téléphonique, Expression gestuelle.
- Expression écrite : Extraction des idées d'un document scientifique, Ecriture d'un message scientifique, Echange d'information par écrit, rédaction de CV, lettres de demandes de stages ou d'emplois.

Recommandation :Il est vivement recommandé au responsable de la matière de présenter et expliquer à la fin de chaque séance (au plus) une dizaine de mots techniques de la spécialité dans les trois langues (si possible) anglais, français et arabe.

Mode d'évaluation:

Examen: 100%.

- 1. P.T. Danison, Guide pratique pour rédiger en anglais: usages et règles, conseils pratiques, Editions d'Organisation 2007
- 2. A.Chamberlain, R. Steele, Guide pratique de la communication: anglais, Didier 1992
- 3. R. Ernst, Dictionnaire des techniques et sciences appliquées: français-anglais, Dunod 2002.

- 4. J. Comfort, S. Hick, and A. Savage, Basic Technical English, Oxford University Press, 1980
- 5. E. H. Glendinning and N. Glendinning, Oxford English for Electrical and Mechanical Engineering, Oxford University Press 1995
- 6. T. N. Huckin, and A. L. Olsen, Technical writing and professional communication for nonnative speakers of English, McGraw-Hill 1991
- 7. J. Orasanu, Reading Comprehension from Research to Practice, Erlbaum Associates 1986

IV -	Programme	détaillé	par n	natièredu	semestres	S2
------	------------------	----------	-------	-----------	-----------	-----------

Semestre 2 Master : Machines Electriques

Semestre: 2

UE Fondamentale Code: UEF 1.2.1

Matière: Modélisation des machines électriques

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement

L'objectif principal est d'approfondir les connaissances des étudiants sur les différents modèles mathématiques dédiés à l'étude du comportement dynamique des machines électriques

Connaissances préalables recommandées

Notions de base sur les machines électriques.

Contenu de la matière :

I : Procédés physiques et mathématiques d'étude.

- Rappels sur les circuits couplés magnétiquement
- conversion électromécanique de l'énergie
- Inductance de la machine
- Composantes symétriques et relatives

II : Théorie de la machine électrique généralisée

- Machine électrique idéalisée
- Machine électrique idéalisée dans le repère naturel
- Modèle triphasé de la machine électrique généralisée
- machine électrique généralisée sous forme complexe
- Passage d'un système triphasé au système biphasé et inversement
- Equation de mouvement de la machine électrique

III : Modélisation des machines électriques à courant continu

- Modèle de la machine à courant continu sur les axes d, q
- Application de la théorie généralisée aux divers modes d'excitation
- Fonctionnement en génératrice
- Fonctionnement en moteur

IV : Modélisation des machines asynchrones

- Modèle de la machine asynchrone triphasée linéaire
- Modèle de la machine asynchrone triphasée saturée
- Modèle des moteurs asynchrones monophasés à condensateur permanent

V : Modélisation des machines synchrones

- Modélisation des moteurs synchrones sans et avec amortisseurs
- Modélisation des génératrices synchrones sans amortisseurs

Mode d'évaluation : 40%, examen : 60%

- 1.R. Abdessemed, "Modélisation et simulation des machines électriques", Ellipses, Collection ,2011.
- 2.M. Jufer, "Les entraînements électriques: Méthodologie de conception", Hermès, Lavoisier, 2010.
- 3.G. Guihéneuf, "Les moteurs électriques expliqués aux électroniciens, Réalisations : démarrage, variation de vitesse, freinage", Publitronic, Elektor, 2014.
- 4.P. Mayé, "Moteurs électriques industriels, Licence, Master, écoles d'ingénieurs", Dunod, Collection : Sciences sup, 2011.
- 5.S. Smigel, "Modélisation et commande des moteurs triphasés. Commande vectorielle des moteurs synchrones", 2000.
- 6.J. Bonal, G. Séguier, "Entrainements électriques à vitesses variables". Vol. 2, Vol. 3.

Semestre 2 Master: Machines Electriques

Semestre: 2

UE Fondamentale Code: UEF 1.2.1

Matière: Champ magnétique dans les machines électriques

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement:

A la fin de ce cours, l'étudiant sera capable de déterminer, via un modèle bidimensionnel, les caractéristiques des machines électriques conventionnelles en résolvant les équations du champ électromagnétique : analytiquement, par l'utilisation de la méthode des variables séparées, pour des géométries simples et numériquement, par la méthode des éléments finis, la méthode des différences finis ou la méthode des intégrales de frontières, pour des géométries complexes,

Connaissances préalables recommandées

- Machines électriques à courants continu et alternatif (fonctionnement moteur et génératrice), Electromagnétisme, circuits électriques, calcul matriciel, programmation informatique.

Contenu de la matière :

- I. Rappel des lois d'électromagnétisme.
- II. Principe de conversion électromagnétique de l'énergie (calcul des efforts, principe de réalisation d'une conversion continue d'énergie)
 - III. Applications aux machines électriques, machines spéciales

Equations de maxwell, formulations intégrales, Potentiels du champ électromagnétique, conditions aux limites, énergie du champ

- électromagnétique,
- Effort Electromagnétique, Tenseur des contraintes de Maxwell, Conversion électromécanique de l'énergie.
- Modèles analytiques des sources du champ magnétique (courants, aimants.)
- Modélisation analytique des machines électriques conventionnelles (synchrone, asynchrone et à CC) par la résolution des équations de Maxwell (Equation de Laplace, Equation de Poisson), expressions mathématiques des grandeurs locales (potentiel, induction magnétique, etc.), Détermination du flux, de la f.e.m, du couple électromagnétique développé.
- Modélisation numérique des machines électriques conventionnelles (synchrone, asynchrone et à CC). Application aux problèmes magnétostatiques

tridimensionnel, bidimensionnels, conditions aux limites, conditions de passage;

- Analyse par la méthode des éléments finis (Description du Logiciel utilisé, domaine de résolution, conditions aux limites, matériaux, bobinages, maillage du domaine, résolution des équations du champ électromagnétique, exploitation des résultats);
- Utilisation de la méthode des différences finis
- Utilisation de la méthode des intégrales de frontières ;
- Méthode mixtes.

Mode d'évaluation : Contrôle continu 40%, examen : 60% **Références bibliographiques** :

- 1. E. Durand: « Magnétostatique. », Masson, Paris, 1968.
- 2. G. Fournet : « Electromagnétisme à partir des équations locales », Masson, Paris, 1985.
- 3. FORSYTHE and WASOW: "Finite difference methods for partial differential equations", John Wiley and Sons.
- 4. Peter P. Silvester, M. V. K. Chari: "Finite Elements in Electrical and Magnetic Field Problems." John Wiley & Sons Inc, 1980
- 5. Peter P. Silvester, Ronald L. Ferrari:" *Finite Elements for Electrical Engineer."*, 3ed, Cambridge University Press, 1996.

Semestre 2 Master: Machines Electriques

Semestre: 2

UE Fondamentale Code: UEF 1.2.2

Matière: Construction des machines électriques

VHS: 45 h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement :

L'étudiant sera capable de calculer et dimensionner une machine électrique en fonction des exigences d'un cahier des charges précis.

Connaissances préalables recommandées :

Machines électriques et logiciel de programmation.

Contenu de la matière :

Chapitre I : Matériaux utilisés dans les machines électriques (01 Semaine)

- Matériaux magnétiques ;
- Matériaux conducteurs :
- Matériaux isolants ;
- > Fils de bobinage;
- Matériaux de construction.

Chapitre II : Circuit magnétique. Différents paramètres. Pertes **(02 Semaines)**

- Calcul de circuit magnétique ;
- > Calcul des différents paramètres des machines électriques :
- > Calcul des pertes et rendement.

Chapitre III: Bobinages des induits **Semaines**)

(03

Types de bobinage des machines à courant alternatif ; Isolation des bobines ; Coefficient d'utilisation ; Coefficient de remplissage d'encoches ; Coefficient de bobinage ; bobinages à simple couche et à double couches ; Types de bobinage des machines à courant continu.

Chapitre IV : Calcul des machines électriques

IV.1 - Machines asynchrones

(03

Semaines)

Calcul d'une machine à cage et à rotor bobiné, choix du bobinage, détermination des paramètres etdes pertes, caractéristiques

IV.2 - Machines synchrones:

(03

Semaines)

Calcul d'une machine à pôles lisses et à pôles saillants avec amortisseurs, choix du bobinage, détermination des paramètres et des pertes et caractéristiques.

IV.3 - Machines à courant continu (03 Semaines)

Calcul, Choix du matériau, choix de bobinage, détermination des pertes et des paramètres et caractéristiques

Mode d'évaluation : Contrôle continu40%, examen : 60 %

- 1. M. Kostenko, L. Piotrovski, Machines électriques, Tomes I et II, Editions Mir, Moscou, 1979.
- 2. J.Pyrhönen, T.JokinenetV.Hrabovcovà « Design of rotating electrical Machines », Wiley, 2008.
- 3. I. P. Kopilov "Calcul des machines électriques", Edition Energie, Moscou, 1980.

Semestre: 2

UE Fondamentale Code: UEF 1.2.2

Matière: Matériaux en électrotechnique et technique de haute tension

VHS: 22h 30 (Cours: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

L'objectif de ce module est l'introduction des propriétés électriques et magnétiques principales des matériaux. L'étudiant devra pouvoir formuler les différents paramètres relatifs aux propriétés électriques et magnétiques des matériaux et comprendre les phénomènes et les mécanismes y afférents.

L'enseignement ainsi dispensé permettra à l'étudiant de cerner son domaine de spécialité et de traiter les matériaux qui sont le siège et le support des phénomènes électromagnétiques avec un formalisme relativement développé.

Connaissances préalables recommandées

Notions de bases sur l'électricité, le magnétisme et la structure de la matière.

Contenu de la matière :

Chapitre I : Matériaux diélectriques

- I.1. Définitions : Dipôle électrique, Moment dipolaire, Vecteur polarisation.
- I.2. Représentation d'un état de polarisation
- I.3. Induction Electrique (généralisation de loi de Gauss)
- I.4. Permittivité diélectrique
- I.5. Conditions aux limites dans un diélectrique
- I.6. Champ local
- I.7. Facteur de Polarisation
- I.8. Types de Polarisation : La polarisation électronique ; La polarisation ionique ; La polarisation dipolaire (orientationelle) et la polarisation interfaciale.
- I.9. Relation de Clausuis-mossotti
- I.10. Permittivité d'un mélange homogène
- I.11. Polarisation électronique en régime variable : Modèle simplifié; Modèle amélioré;
- I.12. Polarisation dipolaire en régime variable.
- I.13. Etude des courants de conduction et les courants de déplacement dans un diélectrique
- I.14. Schéma équivalent d'un diélectrique en régime statique
- $I.15. \ Courants\ transitoires\ dans\ les\ isolants$: Courant d'absorption ; Courant de résorption.

- I.16. Indice de Polarisation
- I.17. Schéma équivalent d'un diélectrique en régime variable
- I.18. Pertes diélectriques
- I.19. Facteur de dissipation diélectrique
- I.20. Effet de la fréquence sur les pertes diélectriques
- I.21. Rigidité diélectriques et mécanismes de claquage
- I.22. Dégradation de la rigidité diélectrique
- I.23. Contraintes rencontrées par la fonction d'isolation
 - Contraintes mécaniques, électriques, climatiques et radiatives...
- I.24. Méthode de choix d'un isolant

Chapitre II : Matériaux Magnétiques

- II.1. Définitions : Moment magnétique, dipôle magnétique, les courants ampériens ;
- II.2. Vecteur aimantation:
- II.3. Potentiel vecteur magnétique;
- II.4. Représentation d'un état d'aimantation ;
- II.5. Généralisation de la loi d'Ampère;
- II.6. Perméabilité et susceptibilité magnétique ;
- II.7. Nature des Matériaux : Moment magnétique orbital, moment magnétique de spin ;
- II.8. Classification des matériaux magnétiques :
 - Les matériaux diamagnétiques ;
 - Les matériaux paramagnétiques ;
 - Les matériaux ferromagnétiques ;
 - Les matériaux anti-ferromagnétiques ;
 - Les matériaux ferrimagnétiques.
- II.9. Domaines magnétiques :
 - L'origine de la structure en domaine
- II.10. Courbe d'aimantation;
- II.11. Cycle d'hystérésis et son dépendance de la fréquence et de la température ;
- II.12. Matériaux magnétiques doux :
 - Exemples et caractéristiques ;
 - Pertes par hystérésis et par courants de Foucault.
- II.12. Matériaux magnétiques durs :
 - Exemples et caractéristiques.

- II.13. Mesure des caractéristiques magnétiques
- II.14. Circuits magnétiques

Chapitre III : - Matériaux Conducteurs

- III.1. Définitions et Propriétés physiques
- III.2. Présentation des différents types de conducteurs
- III.3. Modification des caractéristiques par rapport à des phénomènes extérieurs (température, etc.).

- Matériaux semi-conducteurs

- III.4. Introduction des semi-conducteurs.
- III.5. Définition des semi-conducteurs, types de semi-conducteurs, la jonction p-n et les applications.
- III.6. Modification des caractéristiques par rapport à des phénomènes extérieurs (température, etc.).

Chapitre IV : Supraconductivité et matériaux supraconducteurs

- IV.1. Définition de l'état supraconducteur.
- IV.2. Théorie du BCS.
- IV.3. Applications et intégration des supraconducteurs dans le génie électrique.

Chapitre V: Techniques de Haute Tension

- V.1. Source de la haute tension : (Généralités ; Source de la H.T. en continue, en alternative, et en impulsionnelle)
- V.2. Métrologie en H.T. : (Mesure de la H.T. alternative et continue de choc ; Mesures des pertes diélectrique)
- V.3. Elément de compatibilité électromagnétique : (Généralités sur les systèmes perturbés ; Règles pratiques de protection contre les champs électriques et magnétiques)
- V.4. Décharges électriques : (Décharges dans les gaz , dans les liquides, dans les solides ; Protection contre la foudre ; Effet couronne)
- V.5. Impact de la HT sur l'environnement

Mode d'évaluation : contrôle continu 40%, examen : 60%

- 1. P. Brissonneau : "Magnétisme et Matériaux Magnétiques pour l'electrotechnique.", Hermes, Paris, 1997.
- 2. R. BOITE, J. Neirynck "Matériaux de l'Electrotechnique ", Traité d'Electricité, vol. II, Presses polytechniques et universitaires romandes, Lausanne, 1989.

Semestre: 2

UE Fondamentale Code: UEF 1.2.2

Matière: Asservissements échantillonnés et régulation numérique

VHS: 45h (Cours: 1h30, TD 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement

L'objectif principal est d'approfondir les connaissances des étudiants sur l'asservissement et les techniques de régulation numérique.

Connaissances préalables recommandées

Notions de base sur l'asservissement.

Contenu de la matière :

Chapitre 1 : Modélisation des signaux et des systèmes échantillonnés

- 1.1 Introduction;
- 1.2 Principes fondamentaux de l'échantillonnage des signaux ;
- 1.3 Exemples de signaux échantillonnés simples ;
- 1.4 Transformée en z des signaux échantillonnés ;
- 1.5 Fonction de transfert en z ;
- 1.6 Transformée de Fourier à temps discret :
- 1.7 Comportement fréquentiel des systèmes échantillonnés;
- 1.8 Relations entre les modèles à temps continu et à temps discret.

Chapitre 2:Stabilité et performances des systèmes échantillonnés asservis

- 2.1 Mise en équation des asservissements échantillonnés ;
- 2.2 Stabilité des asservissements échantillonnés :
- 2.3 Asservissements continus commandés ou corrigés en temps discret :
- 2.4 Précision des asservissements échantillonnés ;
- 2.5 Performances dynamiques d'un système échantillonné.

Chapitre 3 : Correction des systèmes échantillonnés asservis

- 3.1 Principes généraux ;
- 3.2 Tentatives d'actions correctives simples ;
- 3.3 Synthèse d'un correcteur numérique par discrétisation d'un correcteur continu ;
- 3.4 Synthèse d'un correcteur numérique par méthode polynomiale.

Chapitre 4 :Représentation d'état des systèmes à temps discret

- 4.1 Principe général;
- 4.2 Résolution des équations d'état ;
- 4.3 Commandabilité d'un système à temps discret ;
- 4.4 Observabilité de l'état d'un système ;
- 4.5 Relation entre la représentation d'état et la fonction de transfert d'un système ;
- 4.6 Commande échantillonnée d'un système à temps continu;

Mode d'évaluation : Contrôle continu 40%, examen : 60%

- 1. P. Clerc. Automatique continue, échantillonnée : IUT Génie Electrique-Informatique Industrielle, BTS, Electronique- Mécanique-Informatique, Editions Masson (198p), 1997.
- 2.Ph. de Larminat, Automatique, Editions Hermes 2000.
- 3.P. Codron et S. Leballois, Automatique : systèmes linéaires continus, Editons Dunod 1998.
- 4.Y. Granjon, Automatique : Systèmes linéaires, non linéaires, à temps continu, à temps discret, représentation d'état, Editions Dunod, 2001.
- 5.K. Ogata, Modern control engineering, Fourth edition, Prentice Hall International Editions 2001.
- 6.B. Pradin, Cours d'Automatique. INSA de Toulouse, 3ème année spécialité GII.
- 7.M. Rivoire et J.-L. Ferrier, Cours d'Automatique, tome 2 : asservissement, régulation, commande analogique, Editions Eyrolles 1996.
- 8.Y. Thomas, « Signaux et systèmes linéaires : exercices corrigées », Editions Masson 1993.
- 10.Y. Thomas. « Signaux et systèmes linéaires », Editions Masson 1994.

Semestre 2

UE Méthodologique Code : UEM 1.2

Matière: TP Modélisation des machines électriques

VHS: 22h30 (Cours: 1h)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

L'objectif principal est de mettre en œuvre des modèles mathématiques de machines électriques en vue de simulation numérique de leur comportement.

Connaissances préalables recommandées

Machines électriques. Programmation informatique.

Contenu de la matière :

- Modélisation et simulation d'un moteur à courant continu à excitation séparée ;
- Modélisation et simulation d'un moteur asynchrone triphasé ;
- Modélisation et simulation d'une génératrice synchrone à aimants permanents.

Mode d'évaluation : Examen : 100 %

Références bibliographiques :

Brochure de TP; Notes de cours ; Documentation de Labo.

Semestre: 2

UE Méthodologique Code : UEM 1.2

Matière: TP Asservissements échantillonnés et régulation numérique

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement :

Savoir modéliser et simuler les systèmes discrets. Comprendre l'échantillonnage et la reconstitution. Vérifier le comportement dynamique des systèmes discrets. Simuler et implémenter les régulateurs numériques PID, RST et par retour d'état.

Connaissances préalables recommandées :

Savoir utiliser les logiciels de simulation et de programmation. Commande des systèmes linéaires continus.

Contenu de la matière :

TP 1: Echantillonnage et reconstitution (01 semaine)

TP 2: Systèmes échantillonnés: analyse temporelle et analyse fréquentielle (02 semaines)

TP3: Commande par régulateur PID numérique (04 semaines)

TP4: Commande RST numérique (04 semaines)

TP5: Commande numérique par retour d'état (04 semaines)

Mode d'évaluation :

Contrôle continu: 100%

- 1. Réglages échantillonnés (T1 et T2), H. Buhler, PPR
- 2. Régulation industrielle, E. Godoy, Dunod
- 3. Computer controlled systems, K. J. Astrom et B. Wittenmark, Prentice Hall
- 4. Automatique des systèmes échantillonnés, J. M. Retif, INSA

Semestre: 2

UE Méthodologique Code : UEM 1.2

Matière: TP Champ magnétique dans les machines électriques

VHS: 15h (TP: 1h)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement

Permettre à l'étudiant de se familiariser avec la résolution des équations du champ électromagnétique. Pouvoir mettre enœuvre des programmes de calcul pour des cas analytiques ou encore utiliser des codes dans le cas de résolutions numériques.

Connaissances préalables recommandées

Mathématique. Machines électriques. Théorie du champ électromagnétique. Analyse numérique. Programmation informatique.

Contenu de la matière :

- Ecriture d'un programme informatique pour la résolution de cas simples d'équations aux dérivées partielles ;
- Ecriture d'un programme pour calculer le champ dans une machine électrique linéaire (MS, MAS, MCC, etc.);
- Utilisation d'un logiciel de calcul par éléments finis pour déterminer les grandeurs globales d'une machine électrique donnée à partir des grandeurs électromagnétiques locales.

Mode d'évaluation : Examen 100%

Référence :

- 1. E. Durand : « Magnétostatique. », Masson, Paris, 1968.
- 2. G. Fournet : « *Electromagnétisme à partir des équations locales* », Masson, Paris, 1985.
- 3. Forsythe and Wasow: "Finite difference methods for partial differential equations", John Wiley and Sons.
- 4. Peter P. Silvester, M. V. K. Chari: "Finite Elements in Electrical and Magnetic Field Problems." John Wiley & Sons Inc, 1980
- 5. Peter P. Silvester, Ronald L. Ferrari: *Finite Elements for Electrical Engineer.* ", 3ed, Cambridge University Press, 1996.
- 6. J.P. Louis "Modélisation des machines électriques en vue leur commande", Hermes Sciences, Lavoisier, Paris 2004.

Semestre: 2

UE Méthodologique Code : UEM 1.2

Matière:: Association machines-convertisseurs

VHS: 45h (Cours 1h30, TP: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement :

La maîtrise des différentes possibilités d'association entre machines électriques et convertisseurs statiques.

Connaissances préalables recommandées :

Machines électriques, modélisation des machines, électronique de puissance, notions de mécanique, asservissement et régulation.

Contenu de la matière :

Chapitre1: Convertisseur-Moteur à courant continu (03 semaines)

- 1.1. MCC Redresseur triphasé (Mode de fonctionnement et équations électromécaniques, Détermination de l'inductance de lissage, Insertion de la tension d'induit, convertisseur bidirectionnel avec et sans courant de circulation, inversion du champ d'excitation).
- 1.2. MCC- Hacheur (Réglage de la vitesse de rotation, Régime de fonctionnement avec moteur indépendant, Régime de fonctionnement avec moteur série, Technique de freinage par récupération, Technique de freinage rhéostatique, Fonctionnement dans les 4 quadrants, Association hacheur moteur série de traction).

Chapitre 2: Machine asynchrone - Convertisseurs statiques (05 semaines)

- 2.1. Intérêt de la vitesse variable ;
- 2.2. Procédés de variation de vitesse (par action sur la tension, variation de la résistance rotorique par hacheur, cascadehyposynchrone, les modes de freinage, Fonctionnement dans les 4 quadrants);
- 2.3. MAS Gradateur triphasé (Démarrage progressif et variation de vitesse, Inversion du sens de rotation, Application industrielle).
- 2.4. Variation de vitesse des MAS par onduleur (Alimentation en courant, alimentation en tension, introduction aux structures multi-niveaux)
- 2 .5 Variateurs de fréquence industriels (association convertisseur AC/DC/AC -MAS)

Chapitre 3 : Machine synchrone - convertisseurs statiques (03 semaines)

3.1. Démarrage du moteur synchrone (Onduleur de courant - MS, Onduleur de tension - MS

Différents types de commandes, Fonctionnement à faibles vitesses et circuits d'aide au démarrage)

3.2. Autopilotage du Moteur Synchrone

Chapitre 4 : Machines spéciales- Convertisseurs statiques (02 semaines)

- 4.1. Onduleur de tension Moteur brushless;
- 4.2. Capteur résolveur ;
- 4.3. Alimentation de puissance pour moteurs pas à pas.

Chapitre 5 : Interactions convertisseur-machine (02 semaines)

Etudier les effets des harmoniques générés par les CS sur la machine (Pertes supplémentaires, pulsations du couple, etc.).

Programme des TP:

- Simulation de la machine à courant continu associée à un hacheur ;
- Simulation de l'association : onduleur de tension à MLI sinus triangle et vectorielle- machine synchrone ;
- Simulation de l'association onduleur- machine asynchrone.

Mode d'évaluation : Contrôle continu40% ; Examen : 60%.

Semestre: 2

Unité d'enseignement : UED 1.2 Matière : Matière 3 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1

Semestre: 2

Unité d'enseignement : UED 1.2 Matière : Matière 4 au choix VHS : 22h30 (cours : 1h30)

Crédits : 1 Coefficient : 1 Semestre: 2

Unité d'enseignement : UET 1.2

Matière : Éthique, déontologie et propriété intellectuelle

VHS: 22h30 (Cours: 1h30)

Crédit : 1 Coefficient : 1

Objectifs de l'enseignement:

Développer la sensibilisation des étudiants aux principes éthiques. Les initier aux règles qui régissent la vie à l'université (leurs droits et obligations vis-à-vis de la communauté universitaire) et dans le monde du travail. Les sensibiliser au respect et à la valorisation de la propriété intellectuelle. Leur expliquer les risques des maux moraux telle que la corruption et à la manière de les combattre.

Connaissances préalables recommandées :

Aucune

Contenu de la matière :

A- Ethique et déontologie

I. Notions d'Ethique et de Déontologie semaines)

(3

- 1. Introduction
 - 1. Définitions : Morale, éthique, déontologie
 - 2. Distinction entre éthique et déontologie
- 2. Charte de l'éthique et de la déontologie du MESRS : Intégrité et honnêteté. Liberté académique. Respect mutuel. Exigence de vérité scientifique, Objectivité et esprit critique. Equité. Droits et obligations de l'étudiant, de l'enseignant, du personnel administratif et technique.
- 3. Ethique et déontologie dans le monde du travail Confidentialité juridique en entreprise. Fidélité à l'entreprise. Responsabilité au sein de l'entreprise, Conflits d'intérêt. Intégrité (corruption dans le travail, ses formes, ses conséquences, modes de lutte et sanctions contre la corruption)

II. Recherche intègre et responsable

(3 semaines)

- 1. Respect des principes de l'éthique dans l'enseignement et la recherche
- 2. Responsabilités dans le travail d'équipe : Egalité professionnelle de traitement. Conduite contre les discriminations. La recherche de l'intérêt général. Conduites inappropriées dans le cadre du travail collectif
- 3. Adopter une conduite responsable et combattre les dérives : Adopter une conduite responsable dans la recherche. Fraude scientifique. Conduite contre la fraude. Le plagiat (définition du plagiat, différentes formes de plagiat, procédures pour éviter le plagiat involontaire, détection du plagiat, sanctions contre les plagiaires, ...). Falsification et fabrication de données.

B- Propriété intellectuelle

I- Fondamentaux de la propriété intellectuelle semaines)

(1

- 1- Propriété industrielle. Propriété littéraire et artistique.
- 2- Règles de citation des références (ouvrages, articles scientifiques, communications

dans un congrès, thèses, mémoires, ...)

II- Droit d'auteur

(5 semaines)

1. Droit d'auteur dans l'environnement numérique

Introduction. Droit d'auteur des bases de données, droit d'auteur des logiciels.Cas spécifique des logiciels libres.

2. Droit d'auteur dans l'internet et le commerce électronique

Droit des noms de domaine. Propriété intellectuelle sur internet. Droit du site de commerce électronique. Propriété intellectuelle et réseaux sociaux.

3. Brevet

Définition. Droits dans un brevet. Utilité d'un brevet. La brevetabilité. Demande de brevet en Algérie et dans le monde.

4. Marques, dessins et modèles

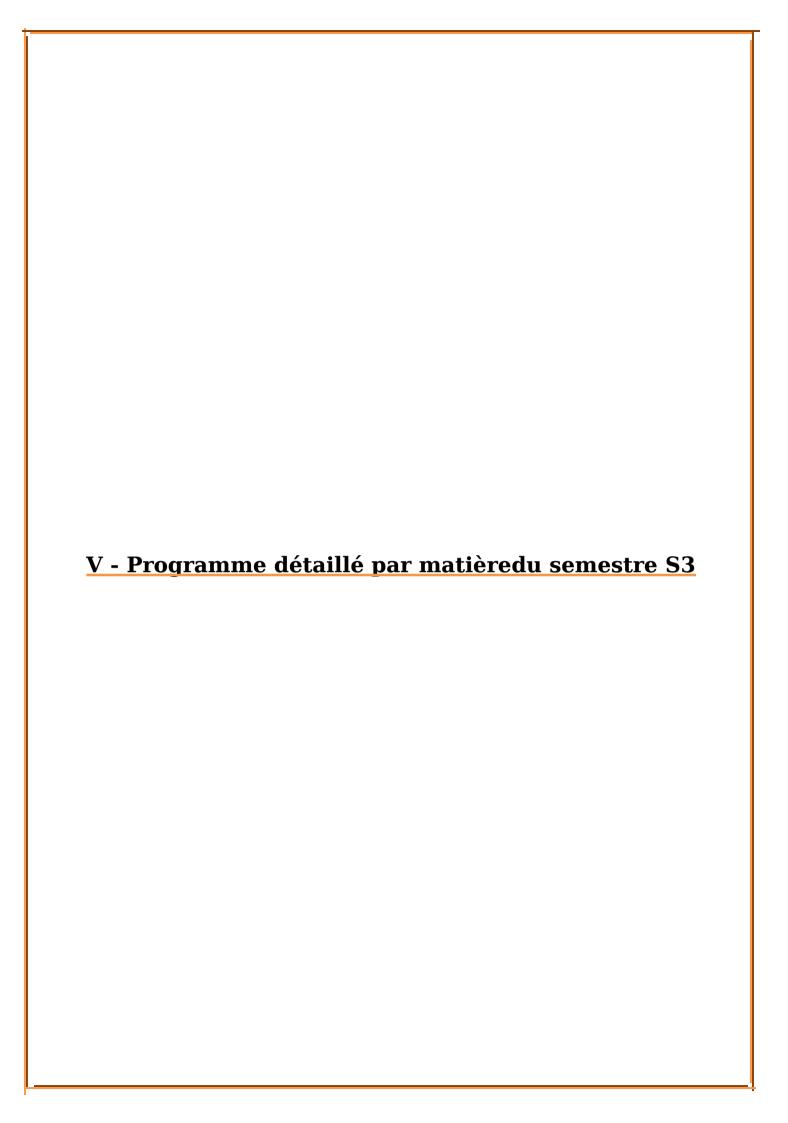
Définition. Droit des Marques. Droit des dessins et modèles. Appellation d'origine. Le secret. La contrefaçon.

5. Droit des Indications géographiques

Définitions. Protection des Indications Géographique en Algérie. Traités internationaux sur les indications géographiques.

III- Protection et valorisation de la propriété intellectuelle semaines)

(3


Comment protéger la propriété intellectuelle. Violation des droits et outil juridique. Valorisation de la propriété intellectuelle. Protection de la propriété intellectuelle en Algérie.

Mode d'évaluation :

Examen: 100 %

- 1. Charte d'éthique et de déontologie universitaires, https://www.mesrs.dz/documents/12221/26200/Charte+fran_ais+d_f.pdf/50d6de61-aabd-4829-84b3-8302b790bdce
- 2. Arrêtés $N^{\circ}933$ du 28 Juillet 2016 fixant les règles relatives à la prévention et la lutte contre le plagiat
- 3. L'abc du droit d'auteur, organisation des nations unies pour l'éducation, la science et la culture(UNESCO)
- 4. E. Prairat, De la déontologie enseignante. Paris, PUF, 2009.

- 5. Racine L., Legault G. A., Bégin, L., Éthique et ingénierie, Montréal, McGraw Hill. 1991.
- 6. Siroux, D., Déontologie : Dictionnaire d'éthique et de philosophie morale, Paris, Quadrige, 2004, p. 474-477.
- 7. Medina Y., La déontologie, ce qui va changer dans l'entreprise, éditions d'Organisation, 2003.
- 8. Didier Ch., Penser l'éthique des ingénieurs, Presses Universitaires de France, 2008.
- 9. Gavarini L. et Ottavi D., Éditorial. de l'éthique professionnelle en formation et en recherche, Recherche et formation, 52 | 2006, 5-11.
- 10.Caré C., Morale, éthique, déontologie. Administration et éducation, 2e trimestre 2002, n°94.
- 11. Jacquet-Francillon, François. Notion : déontologie professionnelle. Letélémague, mai 2000, n° 17
- 12.Carr, D. Professionalism and Ethics in Teaching. New York, NY Routledge. 2000.
- 13. Galloux, J.C., Droit de la propriété industrielle. Dalloz 2003.
- 14. Wagret F. et J-M., Brevet d'invention, marques et propriété industrielle. PUF 2001
- 15.Dekermadec, Y., Innover grâce au brevet: une révolution avec internet. Insep 1999
- 16.AEUTBM. L'ingénieur au cœur de l'innovation. Université de technologie Belfort-Montbéliard
- 17. Fanny Rinck etléda Mansour, littératie à l'ère du numérique : le copier-coller chez les étudiants, Université grenoble 3 et Université paris-Ouest Nanterre la défense Nanterre, France
- 18. Didier DUGUEST IEMN, Citer ses sources, IAE Nantes 2008
- 19.Les logiciels de détection de similitudes : une solution au plagiat électronique? Rapport du Groupe de travail sur le plagiat électronique présenté au Sous-comité sur la pédagogie et les TIC de la CREPUQ
- 20. Emanuela Chiriac, Monique Filiatrault et André Régimbald, Guide de l'étudiant: l'intégrité intellectuelle plagiat, tricherie et fraude... les éviter et, surtout, comment bien citer ses sources, 2014.
- 21. Publication de l'université de Montréal, Stratégies de prévention du plagiat, Intégrité, fraude et plagiat, 2010.
- 22. Pierrick Malissard, La propriété intellectuelle : origine et évolution, 2010.
- 23. Le site de l'Organisation Mondiale de la Propriété Intellectuelle www.wipo.int
- 24. http://www.app.asso.fr/

Semestre: 3

UE Fondamentale Code: UEF 2.1.1

Matière: Machines électriques spéciales

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement :

Se familiariser avec les divers autres types de machines après avoir étudié les machines classiques (M.C.C. et M.C.A. symétriques tournantes). Etre capable decomprendre leur principe de fonctionnement, les caractériser et aussi les classifier selon les grandes catégories déjà vues.

Connaissances préalables recommandées :

Machines électriques. Modélisation des machines.

Contenu de la matière :

- Introduction aux machines spéciales ;
- Machines asynchrones: Moteurs monophasés (à cage d'écureuil, à collecteur; avec la bague frigger, etc.); Moteur linéaire; machines multiphasées (>3) et multi-étoiles;
- Machines synchrones: Synchromachines; Machines à réluctance variable; Machines à aimants permanents; Moteurs pas à pas; Machines supraconductrices;
- Micromachines : Synchromachines (selsynes) ; Moteurs synchrones à hystérésis ; Génératrices tachymétriques à C.C ; Resolvers.

Semestre: 3

UE Fondamentale Code: UEF 2.1.1

Matière: Régimes transitoires des machines électriques

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs de l'enseignement :

Pouvoir étudier les régimes transitoires dans les machines électriques que se soit les régimes qui font partie du fonctionnement des machines tel que le démarrage ou les accidents brusques. L'intérêt étant évidemment dans le dimensionnement des dispositifs d'alimentation et de protections de ses machines mais aussi en amont leur conception.

Connaissances préalables recommandées :

Circuits électriques, machines électriques, Modélisation des machines. Analyse numérique

Contenu de la matière :

I/ Régimes transitoires dans le circuit électriques linéaires. Circuits à courant continu. Circuits à courant alternatif.

II/ Régimes transitoires dans les transformateurs. Mise sous tension d'un transformateur. Court-circuit brusque d'un transformateur. Surtension dans les transformateurs. Efforts électrodynamiques en court-circuit.

III/ Régimes transitoires dans les machines à courant continu. Démarrage d'un moteur shunt. Régimes transitoire d'une génératrice shunt.

IV/ Régimes transitoires dans les machines synchrones. Court-circuit brusque aux bornes d'un alternateur. Stabilité dynamique d'un moteur asynchrone. V/ Régimes transitoires dans les machines asynchrones. Démarrage d'un moteur asynchrone. Déclenchement d'un moteur asynchrone. Court-circuit brusque aux bornes d'un moteur asynchrone.

Semestre: 3

UE Fondamentale Code: UEF 2.1.1

Matière: Conception assistée par ordinateur des machines électriques

VHS: 22h30 (Cours: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

Le but de ce cours est de fournir aux étudiants une vue d'ensemble sur les étapes de la conception assistée par ordinateur avec des objectifs et contraintes dûment consignées dans le cahier de charges. L'optimisation des machines électriques est souvent consubstantielle à la conception.

Connaissances préalables recommandées

-Machines électriques. Méthode des éléments finis. Méthodes d'optimisation.

Contenu de la matière :

- 1. Principe et étapes de la conception d'une machine électrique.
- 2. Méthodes et outils de conception.
- 3. Cahier des charges (spécification des performances, contraintes et limites de fonctionnement).
- 4. Caractérisation d'une machine électrique (principales relations, calcul électrique, calcul mécanique et calcul thermique).
- 5. Exemple paramétrique de conception de machines synchrone, asynchrone, ...etc.

(Détermination du champ électromagnétique à l'aide d'un logiciel basé sur la M.E.F. et optimisation)

Semestre: 3

UE Fondamentale Code: UEF 2.1.2

Matière: Identification et diagnostic des machines électriques

VHS: 22h30 (Cours: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement :L'objectif de ce cours est la détermination des paramètres des machines électriques en vue de leur simulation et leur commande. Il s'agira aussi de permettre à l'étudiant d'acquérir des connaissances indispensables à l'évitement de pannes dans un souci de continuité de service. Les méthodes de diagnostic de pannes sont de deux types : celles basées sur un modèle et celles qui s'en affranchissent.

Connaissances préalables recommandées

Machines électriques à courants continu et alternatif (fonctionnement - moteur et génératrice), circuits électriques,théorie du signal, analyse numérique

Contenu de la matière

Partie 1

- 1. Identification paramétrique de la machine synchrone Essais classiques de la machine synchrone 2.identification paramétrique de la machine asynchrone (Identification de la machine asynchrone à rotor bobiné et de la machine à cage)
- 3. identification paramétrique de la machine à courant continu
- 4. Détermination des paramètres mécaniques
- 1. Essais d'estimation des paramètres des machines électriques
- Essais en courts circuits
- Essais A rotor bloqué
- Essais fréquentiels
- 2. Algorithme d'identification du type erreur de sortie
- 3. Application à l'identification des paramètres des machines électriques : Transformateurs ; Machines à courant continu ; Machines asynchrones (à cage d'écureuil, à rotor bobiné); Machines synchrones (classiques, aimants permanents, MRV, etc.).

Partie 2

Les défauts des machines électriques et leur diagnostic. Constitution des machines. Stator. Rotor. Les paliers.

- 1. Les défaillances des machines électriques. Défaillances mécaniques. Défaillances électriques.
- 2. Techniques de diagnostic avec modèle analytique. Identification. Observation d'état.
- 3. Modélisation des défauts de bobinage.
- **4.** Techniques de diagnostic sans modèle analytique. Approchepar traitement de signal. Méthodes d'intelligence artificielles (réseaux de neurones, logique floue,...).

Semestre: 3

UE Fondamentale Code: UEF 2.1.2

Matière: Echauffement et refroidissement des actionneurs

électromécaniques

VHS: 22h30 (Cours: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

L'objectif principal du cours est de fournir aux étudiants les bases et les principes nécessaires à la compréhension des différents aspects thermiques dont les actionneurs électromécaniques sont le siège. Le cours permet aussi d'initier les étudiants à la modélisation thermique des machines électriques.

Connaissances préalables recommandées

- Bases de construction mécanique des machines électriques
- Bases de mécanique des fluides
- Bases de méthodes numériques

Contenu de la matière :

- 1. Généralités sur le transfert de chaleur
- 1.1 Définitions: Champ de température, Gradient de température, Flux de chaleur
 - 1.2 Formulation d'un problème de transfert de chaleur: Bilan d'énergie
- 2. Modes de transfert de chaleur
 - 2.1 Transmission de chaleur par conduction
 - Loi de Fourier
 - Equation de la chaleur
 - Transfert unidirectionnel
 - Transfert multidirectionnel
 - Les ailettes
 - Analogie électrique
 - 2.2 Transmission de chaleur par convection
 - Coefficient d'échange par convection
 - Convection naturelle
 - Convection forcée
 - 2.3 Transmission de chaleur par rayonnement
 - Lois du rayonnement
 - Rayonnement réciproque de plusieurs surfaces
 - Analogie électrique
- 3. Modélisation thermique des machines électriques
- 3.1 Equation de la chaleur
 - Conditions aux limites spatio-temporelles
 - -Méthode analogique: Réseaux thermiques
 - -Méthodes numériques: Différences finis, volumes finis, éléments finis
- 3.2 Evaluation des paramètres de l'équation de la chaleur
 - Sources de la chaleur
 - Evaluation de la conductivité thermique
 - Contact thermique et isolation

- 3.3 Techniques de modélisation des contacts thermiques
 - Modélisation par utilisation de domaines élargis
- Modélisation dans le cas de l'utilisation de matériaux équivalents 4.3 Modélisation des différents modes d'écoulements relatifs aux machines électriques
 - -Entrefer
 - -Convection en canal rotorique et statorique axial
 - -Refroidissement externes: ailettes

Semestre: 3

UE Fondamentale Code: UEF 2.1.2

Matière: Commande des machines électriques

VHS: 45h (Cours: 1h30, TD: 1h30)

Crédits: 4 Coefficient: 2

Objectifs

- Connaître les différents systèmes électriques d'actionneurs électrique (moteur + charges mécanique et convertisseurs statiques)
- Être capable d'établir un modèle de simulation d'un système électrique comprenant moteur, électronique de puissance et commande
- Être capable de simuler un modèle dans l'environnement Matlab/Simulink
- Être capable de dimensionner les correcteurs présents dans les asservissements des moteurs par une méthode adaptée

Contenu de la matière :

- 1. Rappels sur le fonctionnement des moteurs associés aux charges mécaniques.
- 2. Variateurs de vitesse basée sur des machines asynchrones et synchrones.
- 3. Commande vectorielles des machines synchrones à aimants permanents
- 4. Control direct du couple des moteurs asynchrones (DTC)).
- 5. Commande des mœurs pas à pas

- Electrotechnique industrielle, Guy Séguier et Francis Notelet, Tech et Doc, 1994
- L'Electronique de puissance, Guy Séguier, Dunod, 1990
- Modélisation et commande de la machine asynchrone, J.P. Caron et J.P. Hautier, Technip, 1995
- Control of Electrical Drives, W. Leonard, Springer-Verlag, 1996
- Vector control of AC machines, Peter Vas, Oxford university press, 1990
- Commande des machines à vitesse variable, Techniques de l'ingénieur, vol D3.III, n°3611, 1996
- Actionneurs électriques, Guy Grellet et Guy Clerc, Eyrolles, 1997
- Modélisation contrôle vectoriel et DTC, sous la direction de C. Canudas de Wit, Hermes, 2000

Semestre: 3

UE Méthodologique Code : UEM 2.1

Matière: TP - Machines électriques spéciales

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

L'objectif principal est d'approfondir les connaissances des étudiants sur la constitution et les principes de fonctionnement des machines spéciales.

Connaissances préalables recommandées

Notions de base sur les machines électrique traditionnelles.

Contenu de la matière :

- **1-** Moteur Universel (comparaison entre le moteur monophasé à collecteur à excitation série et le moteur à courant continu à excitation série) ;
- **2-** Moteur asynchrone monophasé (étude des caractéristiques et des différentes modes de démarrage) ;
- 3- Génératrice asynchrone isolée et liée au réseau électrique ;
- 4- Machine synchrone à aimants permanents ;
- 5- Machine synchrone à réluctance variable.

Mode d'évaluation : Examen : 100%

Références bibliographiques :

Brochure de TP, Notes de cours, Documentation de Labo.

Semestre: 3

UE Méthodologique Code : UEM 2.1

Matière: TP - Régimes transitoires des machines électriques

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

L'objectif principal est d'étudier les différents régimes transitoires dans les machines électriques par la simulation.

Connaissances préalables recommandées

Machines électriques ; Modélisation des machines électriques ; Programmation et simulation.

Contenu de la matière :

- 1. Régimes transitoires dans les transformateurs ;
- 2. Régimes transitoires dans une machine à courant continu ;
- 3. Régimes transitoires dans une machine asynchrone ;
- 4. Régimes transitoires dans une machine synchrone.

Mode d'évaluation : Examen : 100%.

- 1. J. Chatelain « Machines électriques », Edition DUNOD, 1982.
- 2. P. Barret « Régimes transitoires des machines électriques tournantes », Edition EYROLLES, 1982.
- 3. Brochure de TP, Notes de cours, Documentation de Labo.

Semestre: 3

UE Méthodologique Code : UEM 2.1

Matière: TP - Commande des machines électriques

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement

L'objectif principal est d'approfondir les connaissances des étudiants sur les différentes stratégies de commande des machines électriques.

Connaissances préalables recommandées :

Notions de base sur les machines électrique, l'asservissement et la simulation.

Contenu de la matière :

- 1- Simulation d'une commande vectorielle d'une machine asynchrone à cage d'écureuil ;
- 2- Simulation d'une cascade hypo-synchrone;
- 3- Simulation d'une commande vectorielle d'une machine synchrone à aimants permanents

Mode d'évaluation : Examen : 100%

Références bibliographiques:

Brochure de TP, Notes de cours.

TP : - Identification et diagnostic des machines électriques

Semestre: 3

UE Méthodologique Code : UEM 2.1

Matière: TP: Identification et diagnostic des machines électriques

VHS: 22h30 (TP: 1h30)

Crédits: 2 Coefficient: 1

Objectifs de l'enseignement :Permettre à l'étudiant de se familiariser avec les méthodes d'identification des paramètres électriques et mécaniques des machines.

Connaissances préalables recommandées

Machines électriques ; Mesure électrique ; Théorie du signal.

Contenu de la matière :

- Identification des paramètres électriques par des essais classiques ;
- Identification des paramètres électriques des machines par des essais indiciels ;
- Identification des paramètres mécaniques des machines électriques ;
- Diagnostic des défauts dans la machine asynchrone ;
- Diagnostic des défauts dans la machine synchrone.

Mode d'évaluation : Examen : 100%

- 1. Brochure de TP.
- 2. R. Abdessemed, "Modélisation des machines électriques", Presses de l'Université de Batna, Algérie, 1997.
- 2. R. Abdessemed, "Modélisation et simulation des machines électriques", Ellipses, Collection, 2011

Semestre: 3

UE Méthodologique Code : UEM 2.1

Matière: TP - Conception des machines électriques

VHS: 15h (TP: 1h)

Crédits: 1 Coefficient: 1

Objectifs:

L'objectif principal de ces travaux pratiques est d'approfondir les connaissances des étudiants sur la conception des différentes machines électriques.

Connaissances préalables

recommandées : Machines électriques ; Logiciel de simulation.

Contenu des travaux pratiques :

TP N°1: Introduction au logiciel utilisé pour la conception des machines électriques;

TP N°2: Conception d'une machine asynchrone assistée par ordinateur ;

TP N°3: Conception d'une machine synchrone assistée par ordinateur ;

TP N°4: Conception d'une machine à CC assistée par ordinateur ;

Mode d'évaluation : Examen : 100 %

Références bibliographiques:

Brochure de TP, Notes de cours.

Semestre: 3

Unité d'enseignement: UET 1.3

Matière 1 : Recherche documentaire et conception du mémoire

VHS: 22h30 (Cours: 1h30)

Crédits : 1 Coefficient : 1

Objectifs de l'enseignement :

Donner à l'étudiant les outils nécessaires afin de rechercher l'information utile pour mieux l'exploiter dans son projet de fin d'études. L'aider à franchir les différentes étapes menant à la rédaction d'un document scientifique. Lui signifier l'importance de la communication et lui apprendre à présenter de manière rigoureuse et pédagogique le travail effectué.

Connaissances préalables recommandées :

Méthodologie de la rédaction, Méthodologie de la présentation.

Contenu de la matière:

Partie I-: Recherche documentaire:

Chapitre I-1 : Définition du sujet

(02 Semaines)

- Intitulé du sujet
- Liste des mots clés concernant le sujet
- Rassembler l'information de base (acquisition du vocabulaire spécialisé, signification des termes, définition linguistique)
- Les informations recherchées
- Faire le point sur ses connaissances dans le domaine

Chapitre I-2 : Sélectionner les sources d'information Semaines)

(02

- Type de documents (Livres, Thèses, Mémoires, Articles de périodiques, Actes de colloques, Documents audiovisuels...)
- Type de ressources (Bibliothèques, Internet...)
- Evaluer la qualité et la pertinence des sources d'information

Chapitre I-3: Localiser les documents

(01 Semaine)

- Les techniques de recherche
- Les opérateurs de recherche

Chapitre I-4 : Traiter l'information Semaines)

(02

- Organisation du travail
- Les guestions de départ
- Synthèse des documents retenus
- Liens entre différentes parties
- Plan final de la recherche documentaire

Chapitre I-5 : Présentation de la bibliographie Semaine)

(01

- Les systèmes de présentation d'une bibliographie (Le système Harvard, Le système Vancouver, Le système mixte...)

- Présentation des documents.
- Citation des sources

Partie II: Conception du mémoire

Chapitre II-1 : Plan et étapes du mémoire Semaines)

(02

- Cerner et délimiter le sujet (Résumé)
- Problématique et objectifs du mémoire
- Les autres sections utiles (Les remerciements, La table des abréviations...)
- L'introduction (La rédaction de l'introduction en dernier lieu)
- État de la littérature spécialisée
- Formulation des hypothèses
- Méthodologie
- Résultats
- Discussion
- Recommandations
- Conclusion et perspectives
- La table des matières
- La bibliographie
- Les annexes

Chapitre II- 2 : Techniques et normes de rédaction

(02 Semaines)

- La mise en forme. Numérotation des chapitres, des figures et des tableaux.
- La page de garde
- La typographie et la ponctuation
- La rédaction. La langue scientifique : style, grammaire, syntaxe.
- L'orthographe. Amélioration de la compétence linguistique générale sur le plan de la compréhension et de l'expression.
- Sauvegarder, sécuriser, archiver ses données.

Chapitre II-3 : Atelier : Etude critique d'un manuscrit

(01 Semaine)

Chapitre II-4 : Exposés oraux et soutenances

(01 Semaine)

- Comment présenter un Poster
- Comment présenter une communication orale.
- Soutenance d'un mémoire

Chapitre II-5 : Comment éviter le plagiat ? Semaine)

(01

(Formules, phrases, illustrations, graphiques, données, statistiques,...)

La citation

- La paraphrase
- Indiquer la référence bibliographique complète

Mode d'évaluation :

Examen: 100%

- 1. M. Griselin et al., Guide de la communication écrite, 2e édition, Dunod, 1999.
- **2.** J.L. Lebrun, Guide pratique de rédaction scientifique : comment écrire pour le lecteur scientifique international, Les Ulis, EDP Sciences, 2007.

- **3.** A. Mallender Tanner, ABC de la rédaction technique : modes d'emploi, notices d'utilisation, aides en ligne, Dunod, 2002.
- **4.** M. Greuter, Bien rédiger son mémoire ou son rapport de stage, L'Etudiant, 2007.
- **5.** M. Boeglin, lire et rédiger à la fac. Du chaos des idées au texte structuré. L'Etudiant, 2005.
- 6. M. Beaud, l'art de la thèse, Editions Casbah, 1999.
- 7. M. Beaud, l'art de la thèse, La découverte, 2003.
- 8. M. Kalika, Le mémoire de Master, Dunod, 2005.

Proposition de quelques matières de découverte

Semestre: ..

UE Découverte Code : UED ..

Matière: Maintenance et sûreté de fonctionnement

VHS: 22h30(Cours: 1h30)

Crédits: 1 Coefficient: 1

Contenu de la matière :

I-Historique, contexte et définitions de la SdF

- **II-Analyse** des systèmes à composants indépendants (-Modélisation de la logique de disfonctionnement par arbres de défaillance, -Exploitation qualitative et quantitative booléen, -Limites de la méthode)
- III- Analyse des systèmes avec prise en compte de certaines dépendances (-Modélisation des systèmes, -Markovienne par graphes des états, - Exploitation quantitative du modèle, - Limite de la méthode)
- IV- Analyse des systèmes avec prise en compte généralisé des dépendances (-Modélisation par les réseaux de pétrie (RdP), Exploitation quantitative du modèle : RdP : stochastique)
- V- Application des méthodologies de sûreté de fonctionnement (fiabilité, -maintenabilité, -Disponibilité, sécurité)
- VI- Méthodologie de prévision de fiabilité (-Calcul prévisionnels la fiabilité, -Analyse des modes de défaillance, -techniques de diagnostic de panne et de maintenance)

Mode d'évaluation : Contrôle continu 40%, examen : 60%

Références bibliographiques:

- 1. Patrick Lyonnet, "Ingénierie de la fiabilité, Edition TEC & DOC, Lavoisier, 2006.
- 2. Roger Serra, "Fiabilité et maintenance industrielle", Cours, Ecole de technologie supérieure ETS, Université de Québec, 2013.

David Smith, Fiabilité, maintenance et risque, DUNOD, Paris 2006.

Semestre: ..

UE Transversale Code: UED...

Matière: Sécurité industrielle et habilitation

VHS: 22h30(Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement :

La matière a pour objectif d'informer le futur Master en Technique de haute tension sur la nature des accidents électriques, les méthodes de secours des accidentés électriques et de lui donner les connaissances suffisantes pour lui permettre de dimensionner au mieux les dispositifs de protection du matériel et du personnel intervenant dans l'industrie et autres domaines d'utilisation de ces équipements.

Connaissances préalables recommandées :

Réseaux de transport et de distribution d'énergie électrique.

Contenu de la matière :

- 1) Risques électriques (historique, normes, statistiques sur les accidents électriques);
- 2) Nature des accidents électrique et dangers du courant électrique ;
- 3) Mesures de protection (protection des personnes et matériels) ;
- 4) Mesure de sécurité contre les effets indirects du courant électrique (matières nuisibles, incendie, explosions, etc.);
- 5) Mesure de secours et soins.

Mode d'évaluation : Examen : 100%

Semestre: ..

UE Transversale Code: UED...

Matière: Normes et législations en Electrotechnique

VHS: 22h30(Cours: 1h30)

Crédits: 1 Coefficient: 1

Partie I: Gestion

I. Types d'entreprises à gérer

Entreprise traditionnelles, orientées vers le profit ;

Organisations à but non lucratif : Administrations, Hôpitaux,

Organisations internationales

II. Outils de la gestion d'entreprise

Méthodes d'analyse et de compréhension des phénomènes socioéconomiques ;

Prise de décision dans un environnement économique changeant et

complexe

III. Exemples de politiques et de concepts de gestion

Le lean-management ;

Le Benchmarking

Partie II : Norme en électrotechnique

Différents organismes de normalisation

Norme Française NFC

Norme européenne EN

Norme internationale CEI

Normes et symboles

Partie III : Certification

I. Mise en place d'un système management qualité (SMQ)

Comment faire?

Pourquoi faire?

- II. La qualité un moyen de faire prospérer l'entreprise
 - 2-1 Politique qualité (PQ);
 - 2-2 Démarche qualité (DM) :
 - 2-3 Responsable management qualité (RMQ);
 - 2-4 Outil PCDA (Plan, Do, Check, Act)

III. Processus de certification

Certification de la norme ISO9001.

Étapes à suivre,

Sensibilisation, diagnostic, Actions,

Audit et dossier technique de certification

Mode d'évaluation : Examen : 100%.

Semestre: ..

UE Découverte Code : UED ..

Matière: Informatique Industrielle

VHS: 22h30 (Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement:

Cette matière permet aux étudiants de ce master de se familiarisé avec le domaine de l'informatique industrielle. Ils acquerront les notions des protocoles de communication.

Connaissances préalables recommandées:

Logique combinatoire et séquentielle, μ -processeurs et μ -contrôleurs, informatique.

Contenu de la matière:

Chapitre 1 : Introduction à l'informatique industrielle ; (02 semaines)

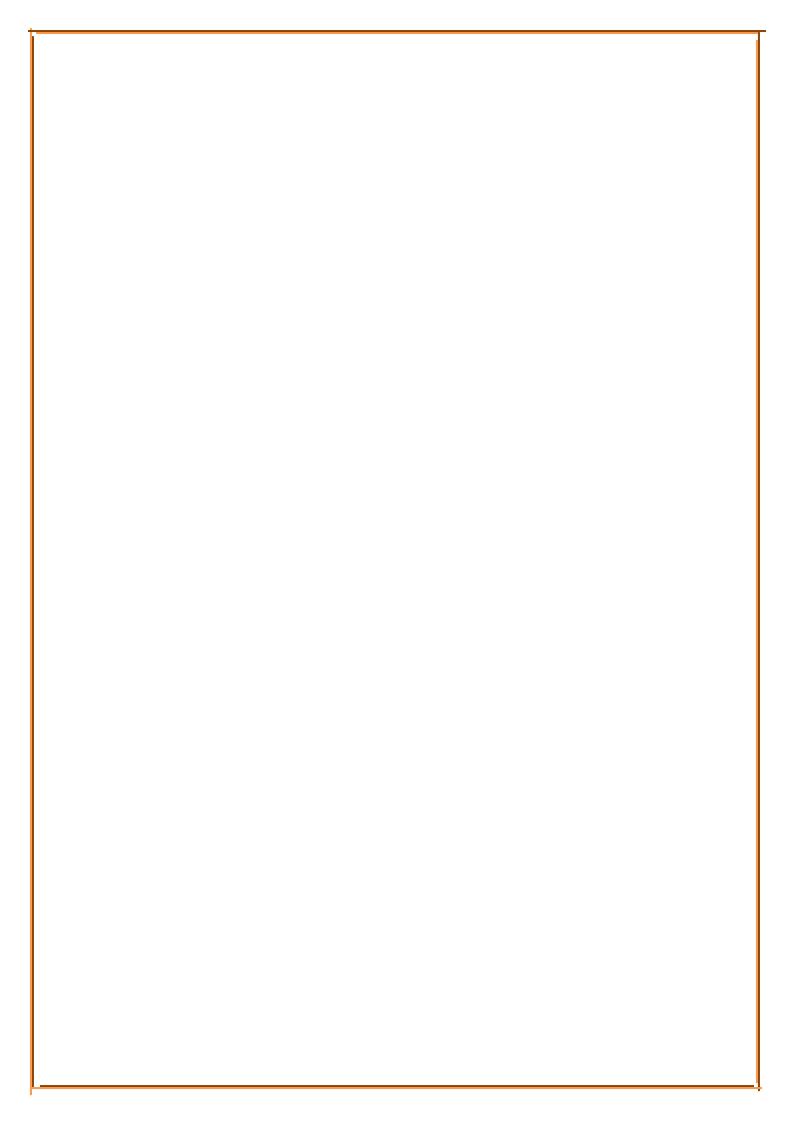
Chapitre 2 : Branchement du matériel à un µP ; (02 semaines)

Chapitre 3 : Périphériques et interfaces (Ports, Timers, ...etc) ; (04)

semaines)

Chapitre 4 : Bus de communication série (RS-232, DHCP, MODBUS, I2C) ; (05

semaines)


Chapitre 5 : Acquisition de données : les périphériques CAN et CNA ; (02

semaines)

Mode d'évaluation:

Examen: 100%

- Baudoin, Geneviève & Virolleau, Férial, « Les DSP famille, TMS 320C54X [texte imprimé]: développement d'applications », Paris: Francis Lefebvre, 2000, ISBN: 2100046462.
- 2. Pinard, Michel, « Les DSP, famille ADSP218x [texte imprimé] : principes et applications », Paris : Francis Lefebvre, 2000, ISBN : 2100043439 ;
- 3. Tavernier, Ch., « Les microcontrôleurs PIC : applications », Paris : Francis Lefebvre, 2000, ISBN : 2100059572 ;
- 4. Tavernier, Ch., « Les microcontrôleurs PIC : description et mise en œuvre », Paris : Francis Lefebvre, 2004, ISBN : 2100067222 ;
- 5. Cazaubon ,christian, « Les microcontrôleurs HC11 et leur programmation », Paris : Masson, [s.d], ISBN : 2225855277 ;
- 6. Tavernier, Christian, « Les microcontrôleurs AVR : description et mise en œuvre », Paris : Francis Lefebvre, 2001, ISBN : 2100055798 ;
- 7. Dumas, Patrick, « Informatique industrielle : 28 problèmes pratiques avec rappel de cours », Paris : Francis Lefebvre, 2004, ISBN : 2100077074.

Semestre ..:

UE Découverte Code : UED ...

Matière: Ecologie Industrielle et Développement Durable

VHS: 22h30(Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement

Sensibiliser au développement durable, à l'écologie industrielle et au recyclage.

Connaissances préalables recommandées:

Contenu de la matière :

- Naissance et évolution du concept d'écologie industrielle
- Définition et principes de l'écologie industrielle
- Expériences d'écologie industrielle en Algérie et dans le monde
- Symbiose industrielle (parcs/réseaux éco-industries)
- Déchets gazeux, liquides et solides
- Recyclage

Mode d'évaluation:

Examen: 100%.

- 1 Écologie industrielle et territoriale, COLEIT 2012, de Junqua Guillaume , Brullot Sabrina
- 1 Vers une écologie industrielle, comment mettre en pratique le développement durable dans une société hyper-industrielle, SurenErkman 2004
- 2 L'énergie et sa maîtrise. Montpellier Cedex 2 : CRDP de Languedoc-Roussillon, 2004. . ISBN 2-86626-190-9,
- 3 Appropriations du développement durable: émergences, diffusions, traductions B Villalba - 2009

Semestre ..:

UE Découverte Code : UED ... Matière: Energies Renouvelables

VHS: 22h30 (Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement

Doter les étudiants des bases scientifiques leur permettant d'intégrer la communauté de la recherche scientifique dans le domaine des énergies renouvelables, des batteries et des capteurs associés à des applications d'ingénierie.

Connaissances préalables recommandées:

Dispositifs et technologies de conversion de l'énergie -

Contenu de la matière

Chapitre1 : Introduction aux énergies renouvelables (Sources d'énergies renouvelables : gisements et matériaux

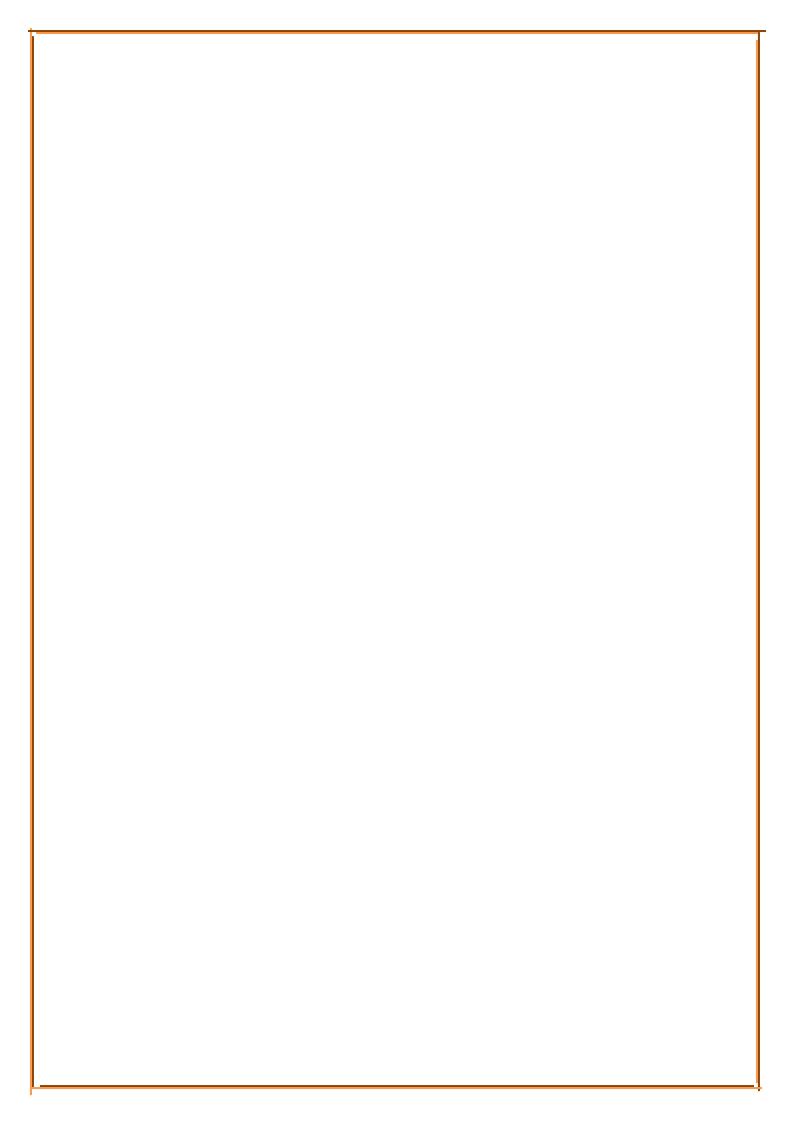
(4 semaines)

Chapitre 2 : Energie solaire (photovoltaïque et thermique) (4

semaines)

Chapitre 3 : Energie éolienne (3

semaines)


Chapitre 4 : Autres sources renouvelables : hydraulique, géothermique, biomasse ... (2 semaines)

Chapitre 5 : Stockage, pile à combustibles et hydrogène (2 semaines)

Mode d'évaluation :

Contrôle continu: 40%; Examen: 60%.

- 1. Sabonnadière Jean Claude. Nouvelles technologies de l'énergie 1: Les énergies renouvelables, Ed. Hermès.
- 2. Gide Paul. Le grand livre de l'éolien, Ed. Moniteur.
- 3. A. Labouret. Énergie Solaire photo voltaïque, Ed. Dunod.
- 4. Viollet Pierre Louis. Histoire de l'énergie hydraulique, Ed. Press ENP Chaussée.
- 5. Peser Felix A. Installations solaires thermiques: conception et mise en œuvre, Ed. Moniteur.

Semestre: ..

UE Découverte Code : UED ..

Matière: Matériaux en électrotechnique

VHS: 22h30 (Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement:

L'objectif de ce cours est de donner les connaissances de base nécessaires à la compréhension des phénomènes physiques intervenant dans les matériaux et à un choix adéquat en vue de la conception des composants et systèmes électriques. Les caractéristiques fondamentales des différents types de matériaux ainsi que leur comportement en présence de champs électrique et magnétique sont traités.

Connaissances préalables recommandées:

Physique fondamentales et mathématiques appliquées.

Contenu de la matière

- **Chapitre 1 :** Connaître et comprendre le fonctionnement, la constitution, la technologie et la spécification du matériel électrique utilisé dans les réseaux électriques.**(03 semaines)**
- Chapitre 2 : Matériaux magnétiques: propriétés, pertes, types, propriétés thermiques et mécaniques, caractérisation, aimants. (04 semaines)
- **Chapitre 3 :** Matériaux conducteurs: propriétés, pertes, isolation, essais et applications.**(04 semaines)**
- **Chapitre 4 :** Matériaux diélectriques: propriétés, pertes, claquage et performances, contraintes, essais.

(04 semaines)

Mode d'évaluation :

Examen: 100%.

- 1. A.C. Rose-Innes and E.H. Rhoderick, Introduction to Superconductivity, Pergamon Press.
- 2. P. Tixador, Les supraconducteurs, Editions Hermès, Collection matériaux, 1995.
- 3. P. Brissonneau, Magnétisme et Matériaux Magnétiques Editions Hermès.
- 4. P. Robert, Matériaux de l' Electrotechnique, Volume II, Traité d'Electricité, d'Electronique et d'Electrotechnique de l'Ecole Polytechnique Fédérale de Lausanne, Edition Dunod.
- 5. Techniques de l'Ingénieur.
- 6. R. Coelho et B. Aladenize, Les diélectriques, Traité des nouvelles Technologies, série Matériaux, Editions Hermès, 1993.
- 7. M. Aguet et M. Ianoz, Haute Tension, Volume XXII, Traité d'Electricité, d'Electronique et d'Electrotechnique de l'Ecole Polytechnique Fédérale de Lausanne, Edition Dunod.

- 8. C. Gary et al, Les propriétés diélectriques de l'air et les très hautes tensions, Collection de la Direction des Etudes et Recherches d'Electricité de France, Edition Eyrolles, 1984.
- 9. Matériaux Diélectriques pour le Génie Electrique, Tome 1 & 2, HERMES LAVOISIER, 2007.

Semestre: ..

UE Découverte Code : UED...

Matière: Implémentation d'une commande numérique en temps réel

VHS: 22h30 (Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement:

Cette unité d'enseignement traite la commande numérique des ensembles convertisseurs machines par composants programmables (µContrôleurs, DSP, ARM, FPGA).

Connaissances préalables recommandées :

 μ -processeurs et μ -contrôleurs, informatique, Commande, Machines électriques, Convertisseurs de puissance.

Contenu de la matière :

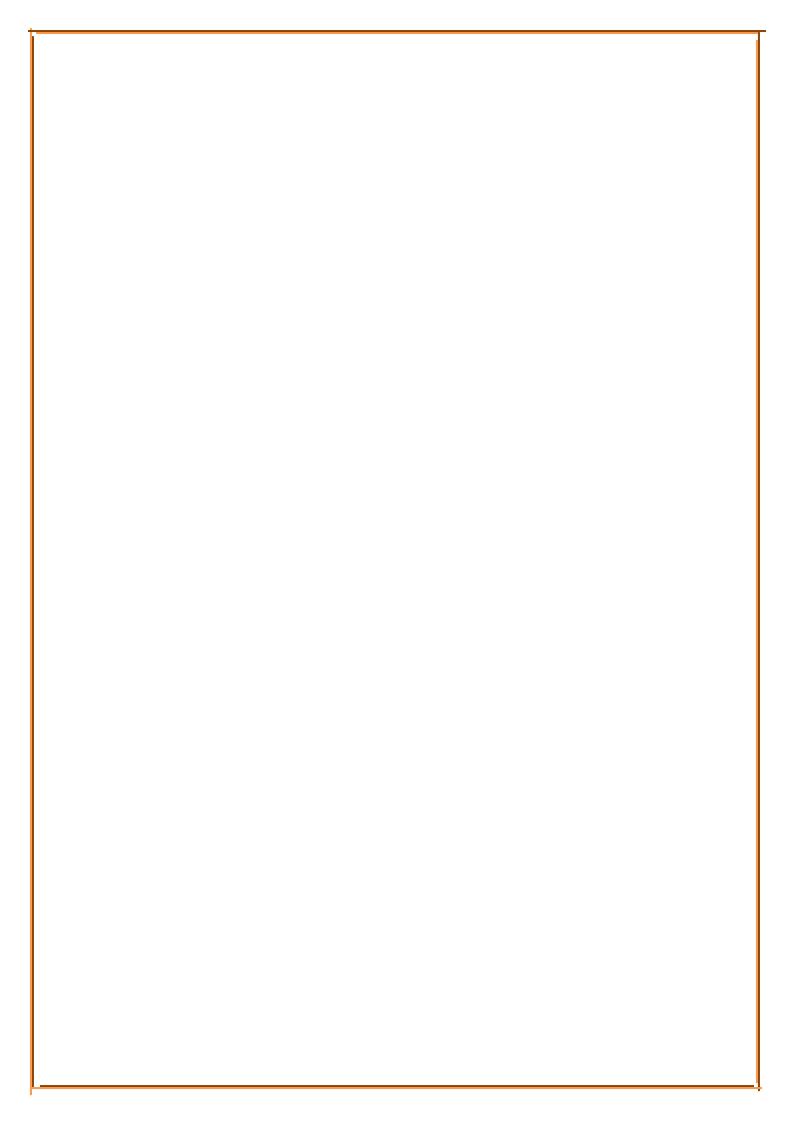
Chapitre 1 : Description des systèmes temps réel ; (03 semaines)

Chapitre 2 : La commande numérique des systèmes ; (04 semaines)

Chapitre 3 : Etude de l'implémentation des techniques MLI sur un processeur

numérique ; (04 semaines)

Chapitre 4 : Exemples d'implémentation de commandes des machines : Machine à


Courant Continu, Machine Asynchrone, Machine Synchrone.

(04 semaines)

Mode d'évaluation:

Examen: 100%.

- 8. B. Bouchez « Applications audionumériques des DSP : Théorie et pratique du traitement numérique », Elektor, 2003.
- 9. Baudoin, Geneviève & Virolleau, Férial, « Les DSP famille, TMS 320C54X [texte imprimé] : développement d'applications », Paris : Francis Lefebvre, 2000, ISBN : 2100046462.
- 10. Pinard, Michel, « Les DSP, famille ADSP218x [texte imprimé] : principes et applications », Paris : Francis Lefebvre, 2000, ISBN : 2100043439 ;
- 11. Tavernier, Ch., « Les microcontrôleurs PIC : applications », Paris : Francis Lefebvre, 2000, ISBN : 2100059572.

Semestre: ..

UE Découverte Code : UED ..

Matière: Qualité de l'énergie électrique

VHS: 22h30 (Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement:

- Etudier les phénomènes principaux qui détériorent la Qualité de l'Energie Electrique (QEE), leurs origines et les conséquences sur les équipements à travers la dégradation de la tension et/ou du courant et les perturbations sur les réseaux.
- Comprendre l'implication des charges non linéaires dans la détérioration de la qualité de l'énergie et prendre connaissance des principales solutions pour l'améliorer en remédiant aux perturbations en les éliminant ou en les atténuants lorsqu'elles sont inévitables.

Connaissances préalables recommandées:

Réseaux électriques, harmoniques, filtres, Electrotechnique fondamentale, Electronique de Puissance.

Contenu de la matière:

Chapitre 1: Introduction à la qualité de l'énergie (QEE) (03 semaines) Contexte, définition et terminologie de la qualité de l'énergie, Objectifs de la mesure de la QEE.

Chapitre 2: Dégradation de la qualité de l'énergie (05 semaines) Problèmes de qualité d'énergie les plus fréquents et effets sur les charges et procédés

- Creux de tension et coupures: Origines des creux de tension et surtensions, Conséquences sur les récepteurs, Notions de Flicker.
- Harmoniques et interharmoniques: Origines des harmoniques. Les charges non linéaires, Impacts des harmoniques sur le réseau et les récepteurs.
- Variations et fluctuations de tension: Origines internes/externes des coupures, Conséquences sur la production et les équipements.
- Phénomènes transitoires: Notions de CEM, Les impacts de foudre, Équipotentialité, Conducteur de protection PE.
- Déséquilibres.

Chapitre 3: Niveau de qualité de l'énergie - Normes (03 semaines) Caractéristiques de la tension. Terminologie, Stratégie de mesure des paramètres de la tension, normes, Analyseurs de réseaux.

Chapitre 4: Solutions pour améliorer la qualité de l'énergie (04 semaines)

Réduction du nombre de creux de tensions et de coupures, Réduction de la durée et de la profondeur des creux de tension, Insensibilisation des installations, Emploi d'alimentation statique sans interruption (ASI), ...

Réduction des courants harmoniques générés: Modification de l'installation, Filtrage passif, Filtrage actif, Filtrage hybride, ...

Remèdes pour la protection contre les surtensions temporaires, les surtensions de manœuvre (self de choc, compensateur automatique statique) , les surtensions atmosphériques (foudre), ...

Fluctuations de tension: Changer de mode d'éclairage, changement du mode de démarrage de moteurs, modification du réseau, ...

Déséquilibres: Equilibrer les charges monophasées sur les trois phases, Augmenter les puissances des transformateurs et la section des câbles en amont des générateurs de déséquilibre, Protection des machines, Emploi de charges LC (montage de Steinmetz),..

Mode d'évaluation:

Examen: 100%

- **1.** Guide to Quality of Electrical Supply for Industrial Installations Part 2 : Voltage Dips and Short Interruptions Working Group UIE Power Quality 1996.
- 2. G.J. Wakileh, Power system harmonics-Fundamental Analysis and Filter Design, Springer-Verlag, 2001.
- 3. A. Kusko, M-T. Thompson, Power Quality in Electrical Systems, McGraw Hill, 2007.
- **4.** F. Ewald Fuchs, M.A.S. Masoum, Power Quality in Power Systems and Electrical Machines, Elsevier Academic Press, 2008.
- 5. R.C. Dugan, Mark F. Granaghan, Electrical Power System Quality, McGraw Hill, 2001.
- **6.** Cahiers techniques Scheider N° CT199, CT152, CT159, CT160 et CT1.
- **7.** A. Robert, Supply Quality Issues at the Interphase between Power System and Industrial Consumers, PQA 1998.
- 8. Qualité de l'énergie, Cours de Delphine RIU, INP Grenoble.

Semestre: ..

UE Découverte Code : UED...

Matière: Techniques de l'intelligence artificielle

VHS: 22h30 (Cours: 1h30)

Crédits: 1 Coefficient: 1

Objectifs de l'enseignement :

La motivation principale de cette matière est la mise en œuvre d'une introduction des capacités offertes par les Techniques de l'Intelligence Artificielle "TIA" en tant que techniques nouvelles et améliorés, en vue de développer des approches pour l'étude des machines électriques. À la fin du module les étudiants doivent maîtriser les notions relatives au TIA, de savoir les manipuler avec la théorie des machines électriques, et utiliser les boites à outils logiciels pour des but de modélisation, identification, optimisation de la conception, diagnostic et synthèse des lois de commande simples, efficaces et robustes). Les résultats parus dans des travaux de recherches sont exploités pour tirer quelques exemples pratiques.

Connaissances préalables recommandées :

Mathématiques, électrotechnique et théorie des systèmes. (Présentation des systèmes électrotechniques, transformations de Fourrier, de Laplace et en Z, Machines électriques -types et théories).

Contenu de la matière :

Optimisation par réseaux de neurones (RN);

Optimisation par logique floue (LF);

Optimisation par algorithmes génétiques (AG);

Optimisation par essaim particulaire (PSO).

APPROCHES HYBRIDES: Introduction - Réseau neuro-flou (ANFIS, SANFIS) - Réseau à base radiale-flou - Optimisation des systèmes flous par algorithmes génétiques - Domaines d'application - Exemples.